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Numerical smulation of the Enthalpy formulation, for the Stefan problems, is known to be
limited by two difficulties: 1) nonphysical waviness in the temperature distribution, as
well as unwanted oscillations close to the phase interface, for isothermal phase change, and
2) convergence and stability problems, as well as inaccuracies due to overwhelming

dissipation of the numerical schemes, at the limit of small Stefan numbers.

The method of space-time conservation element and solution e ement is known for its
low dissipation and dispersion errors, as well as its distinguishingly high capability of
capturing discontinuities accurately. Therefore, this numerical method, mainly applied to
the fluid flow problems, represents an aternative for numerical modeling of moving

boundary (Stefan) problems such as solid/liquid phase change.



In this dissertation, space-time CE/SE schemes are developed, for the solid/liquid
phase change problems, in one-, two-, and three- spatiad dimensions. A separate
formulation is also presented and programmed for the axisymmetric problems. The von
Neumann stability analysis is applied to the one-dimensiona scheme. The results of this

analysis lead to a necessary stability condition.

Each scheme is then validated, numerically, using benchmark problems without and
with phase change. Both analytical and experimental results are used in the validation
process. The results reveal that using the space-time CE/SE method, the first problem
associated with the numerical modeling of the enthalpy method is eliminated. No nor-
physical waviness or unwanted oscillation is detected in the results. The second problem,
however, still existed. Although accurate results can be obtained for small Stefan numbers
using the CE/SE method, a case-dependent adjustment in dissipation was needed. This

presents the potentia for a modification in the original schemes.

Numerical experiments are then conducted, in order to revea the dissipative /
dispersive behavior of the numerical scheme and its variation with the Stefan number. The
results of this analysis lead to the development of a CE/SE scheme that is, to a considerable

degree, insendgitive to the value of the Stefan number.

Finaly, space-time CE/SE method is established as an alternative for the numerical

simulation of the enthalpy method for the Stefan problems.
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Chapter 1

INTRODUCTION

1.1 Realm of Solid-Liquid Phase Change Processes

The range of scientific and industrial applications of heat flow with solid-liquid phase
change is so broad that, in many fields, one has little difficulty finding a phase change
processinvolved. The vastness of this realm can be explored through a brief discussion of
the recent and ongoing phase change related research, ranging from astrophysics to micro-

cryopreservation of live cells for transplants.

1.1.1 Application of Phase Change Process Modding in Astrophysics

Magma exists at high temperature and resides in a fluid- like state insde the Earth while its
cooling process is still taking place. Modeling this cooling process has led to an estimation
of the age of the planet to be not more than 1700 million years.

The cooling process results in the shrinkage of the already solidified crust, generating
compressive stresses that cause failure and lead to formation of mountains, volcanic

activities and seismic events, [1].



A more comprehensive model could be used to achieve a more accurate estimate of our
planet’s age. Moreover, it could predict relative movement of rocks, and could have the

potentia of predicting seismic events.

1.1.2 Application of Phase Change Process M odeling in Magma

Migration and Solidification

Consideration of the motion of magma and its solidification is important to the
understanding of ore body formation and mineralization in the crust of the earth. Owing to
the complex nature of the geological problem, numerica methods have been widely
adopted to find approximate solutions to many geological and minerdization problems.
Nevertheless, numerical agorithm development for simulating magma migration and
solidification is till a an elementary stage. The problem associated with the numerical
modeling is that, in this area, the characteristic dimension of the whole geological system
under consideration has a length scale of tens and sometimes hundreds of kilometers, while
that of the intruded magma, such as sills and dikes has a length scale of meters and tens of
meters. Therefore, new methodologies could be useful to either solve the problems that
were previoudy unsolvable using conventiona finite element methods, or solve the

previoudy solvable problems more efficiently, [2].



1.1.3 Application of Phase Change Process Modeling in the Study of

Undercooled M dts

A melt can be cooled significantly below its equilibrium melting point if the energy barrier
for nucleation of the solid phase is high. However, solid impurities, convective flows, and
the local energy fluctuations in the melt can lower this energy barrier. The highest
achievable energy barrier for nucleation, which corresponds to homogeneous nucleation,
can be achieved only in a containerless, quiescent, pure melt.

Upon cooling, under such conditions, the melt can either solidify extremely rapidly from
a very limited number of nucleation points giving rise to unique metastable
microstructures, or the melt can pass through a glass transition and an amorphous solid
phase is obtained. Knowledge of such processes enables one to predict the formation of
specific phases or glasses with very unique properties.

Recent experience has demonstrated that with containerless processing in the space
environment (i.e., using electromagnetic levitation), these conditions can be achieved and
unique results can be obtained. However, attaining the proper experimental conditions
required for such investigations is not possible on the ground for a wide range of materials,
[3]. Therefore, a reliable numerical model could be used to partially replace expensive

experiments in space.



1.1.4 Application of Phase Change Process M odeling in Studying

Ablation of Entry Objects

In studying the objects that enter the earth’s atmosphere, useful information can be
obtained from trgectory models. It is common to hypothesize about the nature of an entry
object, and then use a trgectory modd to simulate its path, and then compare the results
with what was observed.

An accurate trgectory model must include an evaluation of both the mechanical
fragmentation and the aerothermal ablation since both processes reduce the body’s initial
kinetic energy. Unfortunately, accurate calculation of the rate of ablation mass loss is
extremely difficult, since it requires knowledge of the temperature distribution in the shock
layer, the chemica composition of the meteor, and the degree to which the ablation
products block radiative heat transfer to the body. Therefore, the trgectories predicted by
using different ablation models, significantly differ for a given meteor. Inaccuracies in the
calculated ablation rate can lead to substantial errors in the predicted termina atitude of a
given entry body, [4]. An accurate and efficient numerical phase change simulator could be

part of a broader program for accurately modeling these tragjectories.

1.1.5 Application of Phase Change Process Modeling in Aircraft Icing

In flight, icing on an aircraft surface occurs when the plane flies through a cloud of
supercooled water droplets. A portion of the water droplets impinges on the aircraft

components and results in ice formation. The growth of ice on an aircraft wing resultsin a



sharp increase in drag and a reduction in lift. Ice accretion can serioudy degrade aircraft
performance and handling characteristics. Icing has been implicated in a number of serious
commercia aircraft accidents in recent years.

From a thermodynamic standpoint, two types of ice accretion mechanisms have been
identified, resulting in physically and geometricaly different formations. Immediately upon
impact, the droplets freeze either partialy or completely. The released latent heat of fusion
then, tends to warm the accreted ice and the underlying solid surface towards the fusion
temperature. This warming tendency is counteracted by convective heat loss to the ambient
air. The resulting energy baance between these two factors then, determines the impact
region’s temperature. In cold temperatures with low liquid water content, temperature of
the accreted ice remains below the fusion temperature and the impacting ice droplets freeze
completely. Thisis known asrimeicing. On the other hand, with high liquid water content
and/or air temperatures only dightly below the fusion temperature, the accreted ice is at the
fusion temperature and only a part of the liquid water freezes upon impact. The unfrozen
water, then, tends to run back and freeze downstream of where it impinged on the surface.
Consequently, complex “lobster tail” shapes tend to develop. Thisis called glazed icing.

Rime icing is reasonably well understood and can be adequately smulated for most
practical purposes while glaze icing is more complicated and much additional research is
required before its computational smulations will be sufficiently accurate and reliable for
most practical purposes, (5], [5]). This is another aea that a more accurate phase front

capturing method could be of extreme value.



1.1.6 Application of Phase Change Process Modeling in Casting of

Metals

In recent years, numericd modeling of casting solidification has received increasing
attention because of its enormous potential to improve productivity of the metal casting
industry by reducing the cost and time associated with the traditional, experimentally
based, design of castings. This becomes especially important in the case of permanent mold
casting where mold prototyping can be extremely expensive. The numerical modeling of
cagting solidification has also found its way to the field of dentistry and is reported to be a
reliable design tool for optimization and preventing defects in tooth crowns and bridges,
([71. [8D).

Although computer simulations of solidification of casting offer a basis for predicting
solidification patterns and casting defects, achieving accuracy is not easy to accomplish.
Casting processes, are very difficult to model due to the complicated physics involved,
which includes such phenomena as fluid mechanics with phase change, shrinkage and
porosity, macrosegregation in aloys, heat transfer between the casting and the mold, and
thermal stresses in the solidifying ingot. A further complicating factor is the fact that
typical industria parts have complicated geometries and thus three-dimensional modeling
is necessary. Consequently, although qualitative agreement with experimental data is
reported to be achieved in the literature, simulation times are reported to be large, [9]. Most
of the numerica casting smulations in the literature are accomplished using finite element
methods. An accurate and efficient alternative phase change scheme can be notably more

efficient for this class of applications.



1.1.7 Application of Phase Change Process M odeling in Cryosurgery

Cryosurgery, introduced in 1961, uses localized freezing/thawing cycles to destroy tissue.
The procedure has found several areas of application including treatment of benign and
cancerous prostate growth, liver cancer, breast cancer, skin cancer, Parkinson’'s disease,
kidney cancer, abnormal brain, cervica growth, and lung cancer. Cryosurgery is desirable
because of its medical and economical advantages including low bleeding, good esthetic
results, minimal use of anesthetics, short period of recovery, and low procedural costs, [10].
Cryosurgery uses one or more cryosurgical probes, inserted into the patient’ s body at the
desired point of application. Cryoprobes are small, hollow cylindrical devices, 2-10 mm in
diameter, through which acryofluid, typically liquid nitrogen, flows at a controlled rate.
The objective of procedure is to completely freeze and destroy the tumor or benign
tissue while minimizing the amount of healthy tissue destruction, [11]. The degree of
success in a cryosurgica procedure depends on a number of factors such as the lowest
temperature achieved, the cooling rate during freezing, the thawing rate following the
freezing process, probe placement, the number of repeated freezing/thawing cycles, and the
cooling rate at the freezing front. As an example, it was observed that, the cryosurgical
iceball shape and size is greatly affected by the cryoprobe placement and operation, [12].
Also a pioneering analytical and numerical study of cryosurgery related to lung cancer, by
Bischof, Bastacky and Rubinsky in 1992, revealed that the freezing front accelerates as it
leaves the tumor and enters the surrounding hedlthy, low-density tissue. Therefore,
monitoring, controlling and optimizing the involved parameters are vital. This is where a

numerical smulation of freeze/thaw cycles can play an important role. In fact there are



computer-controlled devices designed to control the freezing front's temperature by
controlling the cryoprobe’ s temperature, [10]. Real-time data processing in the simulation
of the heat transfer process is a very useful feature of these devices. Three-dimensional
real-time simulations, however, require excessive amounts of computational power. The
device, introduced in [10], allows one-dimensional simulations. Upgrading to a faster
processor is suggested in order to be able to perform two-dimensiona smulations.

Obvioudy, a more efficient phase change scheme can also provide advances in this area.

1.1.8 Application of Phase Change Process Modeling in

Cryopreservation of Cellsand Organsfor Transplantation

As anillustration in this class of applications, transplantation of isolated pancreatic idetsis
evolving into an effective treatment of patients with insulin-dependent diabetes mellitus. To
date, a number of idet transplant recipients who have experienced insulin independence
have received cryopreserved idets from a low-temperature bank. Successful
cryopreservation of idet cells demands that the addition and remova of cryoprotectants as
well as cooling and warming are carried out within certain biophysical and cell
physiological tolerance limits. These limits have not yet been fully defined. Cells shrink
transiently upon the addition of cryoprotective agents and then re-swell as the
cryoprotectant permeates. Cells undergo a second shrinkage when cooled at rates low
enough to preclude intracellular freezing as growing extracellular ice concentrates the
solutes in the diminishing volume of nonfrozen water, causing exosmosis. The cells return

once again to their normal volume during warming and thawing. Finally, cells undergo a



potentially damaging osmotic volume excursion during the removal of the cryoprotectant.
Therefore, accurate and efficient treatment of the freezing/thawing in the extracelular
solute plays an important role in the calculation of letha volume changes in cells.
Furthermore, simulations can help provide knowledge to prevent intracellular freezing
during cooling, [13].

The applications described above do not completely cover the realm of phase change
processes. Other applications can be mentioned including formation of ice on the oceans;
smulation of growth and decay of permafrost regions [14]; drilling and mining in
permafrost regions where the rocks are held together by permafrost [15]; welding of metals
and its control in order to reduce defects such as solidification cracking (16], [17]);
separating highly soluble salts from their agueous solution through freezing in wastewater
purification (18], [19]); latent heat therma storage systems and their usage where heat
supply and heat demand are out of phase ([20]-[22]) as well asin maintaining a system’s
temperature in its operating range [23]; meting of fuses in eectrical applications; cooling
of eectronic equipments using latent heat of fusion; deep freezing of food in food
processing industry and its control in order to maintain the origina characteristic of the
fresh food.

In fact it is interesting to note that solid- liquid phase change problems belong to an even
broader class of problems with numerous other gpplications. The feature that distinguishes

this broader class is the subject of the next section.
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1.2 Moving (Free) Boundary Problems

Many problems in various areas of applied science can be modeled using ordinary or
partial differential equations posed in domains whose boundaries are to be determined as
part of the problem. Depending on whether these boundaries are stationary or moving, such
problems are usually referred to as free or moving boundary problems, respectively.

Free or moving boundary problems are, in general, harder to solve, either analytically or
numerically, than the underlying differential equations would be in a prescribed domain. In
particular, two separate solutions of such problems cannot be superposed, and this inherent
nontlinearity means that there is a dearth of analytical solutions, [24]. Moving boundaries
can suddenly vanish, or appear, or move with infinite speed, or become blurred, all causing
complications in the problem.

Problems of this kind arise in many fields such as fluid mechanics (shock waves,
inviscid flow, dow (Hele-Shaw) flow, flow of liquids and gases in porous media),
molecular diffusion, solid mechanics (frictional and contact problems), lubrication, and
heat conduction with melting/freezing.

The scientists who developed the subject to its present shape, and where to find the

details of their work, are reviewed briefly in the next sections.

1.2.1 Historical Background of Moving Boundary Problems

Moving boundary problems are often caled Stefan problems, with reference to the early

work of Jozef Stefan (1835-1893) on solid-liquid phase change published in six treaties
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between the years 1889 and 1891. The solid-liquid phase change story, however, had begun
a century earlier by the Scottish medical doctor, physician and chemist Joseph Black
(1728-1799) in a series of experiments performed with water and ice at the University of
Glasgow between the years 1758 and 1762. He demonstrated that solid- liquid phase change
processes could not be calorically understood within the framework of sensible heat aone.
As a consequence he introduced the term and the concept of latent heat.

French mathematician and physicist Jean Baptiste Joseph Fourier (1768-1830) provided
the necessary physics and mathematics for heat conduction in his “La Théorie Analytique
delaChaeur”, published in 1822. The idea of how to anaytically incorporate latent heat in
heat conduction equations was first explained in a pioneering paper by the physicist Gabriel
Lamé (1795-1850) and the mechanical engineer Emile Clapeyron (1799-1864) in 1831.
This work presents an extension of the earlier work by Fourier, which tried to produce a
rough estimate of the time elapsed since the earth began to cool from the initially molten
state without considering solidification. Franz Neumann (1798-1895) also solved a similar

problem in the early 1860s [25].

Classical Formulation

Jozef Stefan, in addition to Lamé, Clapeyron, and Neumann, contributed importantly to
establishing the roots of the subject [25]. In 1889, Stefan in his work on the freezing of the
ground posed and solved the following two problems.

1) A materid that changes phase at a single fusion temperature T;, and transmitting

heat only by conduction, fills the half-space x > 0. At the initial time it is at the
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constant temperature T; = T;. At the surface x = 0 it is maintained at constant
temperature T,y < Tt, under the effect of which freezing arises isothermally, without
supercooling. Volume change effects are neglected. When T, = T, this problem is
called the one-phase Stefan problem because only one phase is active and the other
phase, where present, remains at the fusion temperature.
Clearly few redlistic phase-change processes will actualy lead to a single-phase situation,
with ablation (instantaneous removal of melt) and induced stirring of liquid while freezing,
being notable exceptions. On the other hand, molecular diffusion, filtration, and other
processes commonly lead to single-phase problems [26], [24]. When T; > T;, however, both
phases are active and the problem is called the two-phase Sefan problem:

2) The heat conducting material described above occupies the space — 8 < x < 8. At
the initial time the liquid phase fills the domain 0 < x < 8 at temperature T, > T;,
while the solid occupies the domain — 8 < x < 0 a temperature Ts < Tt. The
remaining conditions are the same as in the first problem.

Classicaly formulated, the two-phase Stefan problem can be described mathematically
by the heat conduction equation in each phase plus the Stefan condition, (which can be
derived from a global energy balance [27]) at the interface. Consider, for example, a semi-
infinite dab 0 = x < 8, initialy solid at a uniform temperature Ts = T;. By imposing a
constant temperature T, > T; on the face x = 0, mdting starts from the left. The
mathematical formulation can be written as

In melt region:

2
E:aLu, O<x<X(), t>0 (1.2)

Mt x>
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In solid region:
1T ”T
—=a , X({t)<x, t>0 1.2
i Sasye X=X (12)
Interface temperature:
T(X(@),t)=T,, t>0 (1.3)
Stefan condition:
d X(t) 1T : 1T .
rL =-k, —(X() ,t)+k,—X()",t), t>0 14
= ke KO (X7 (14)
Initial conditions:
T(x0) =T, <T,, x>0, X(0)=0 (1.5)
Boundary conditions:
TOt) =T, >T,, Ii(r@rlT(x,t):Ts, t>0 (1.6)

where T denotes temperature, t istime, X isthe spatial coordinate, and Ly, r , X, k, and a
are latent heat of fusion, densty, interface location, conductivity, and diffusivity,
respectively. Subscripts, L and S, refer to the liquid and the solid, respectively.

That reasonably general one-dimensional Stefan Problems are well-posed, i.e, they
have a unique classical solution depending continuously on the data, was established only

during the mid 1970's! [28]. Locd solvability (meaning: there exists atime t* up to which a
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unique classica solution exists) was proved by Rubinstein in 1947 (see [26] for a historica
survey of the mathematical development up to the mid 1960's).

The classical formulation of Stefan problems as models of basic phase-change processes
was presented in the above. Under certain restrictions on the parameters and data such
problems admit explicit solutions in closed form. These smplest possible, explicitly
solvable, Stefan problems form the backbone of our understanding of al phase-change
models and serve as the primary means of validating approximate and numerical solutions
of more complicated problems. Unfortunately, closed-form explicit solutions (all of which
are of smilarity type) may be found only under the following very restrictive conditions:
semi- infinite (and usually one-dimensional) geometry, uniform initial temperature, constant
imposed temperature (at the boundary), and constant thermophysical properties in each
phase, [27].

Stefan-type problems can also be formulated classically in two or three dimensions [27]
but such formulations may admit no (classica) solution. Even one-dimensiona problems
with either internal sources or a variable fusion temperature may develop mushy regions
rendering the above sharp-front classical formulation inappropriate. Fortunately weak or
generalized (enthalpy) formulations, which are well-posed (and computable), came to the
rescue in the early 1960's. Furthermore, since explicit and approximate solutions are
obtainable only for simple problems and only in one space dimension while most realistic
phase-change processes do not neatly fal in this category, the modeling of such processes

may only be attacked numericaly, [27].
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Before closing this discussion of the classical formulation and beginning the next
chapter of the phase-change story, i.e., numerical methods and enthalpy formulation, it is
worthwhile to mention excellent references that cover documented details of phase change
background: Surveys of the early literature with numerous references dating from the time
of Stefan have been written by Bankoff [29] and Muehlbauer and Sunderland [30].
Rubinstein's classic book [26] gives a systematic presentation of the mathematical
developments in Stefan problems up to that time. A later survey is given by Fox (1979)
[31], with useful bibliographies. Reports on severa conferences ([32]-[36]) contain
accounts of mathematical developments and of wide-ranging applications to problems in
physica and biological sciences, engineering, metallurgy, soil mechanics, decision and
control theory, etc. which are of practica importance in industries [33]. More recent

surveys can be found in [27] and [37].

Numerical M ethods

Numerical methods for the phase change problems are designed to be suitable for one of
three main approaches, namely front fixing, front tracking, and front capturing methods.
This section, offers a brief discussion on front fixing and front tracking methods, usually

used for numerical modeling of phase change problems, based on the classical formulation.

Front Fixing Methods

This approach is based on the Landau transformation. By a change of variables

X =X/ X (t) (1.7)
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where X(t) is the interface location, the interval 0 = x = X(t), is mapped onto the fixed
interval 0 = x = 1. Using this mapping, the geometric non linearity of the problem is
eliminated. The governing equations, on the other hand, become explicitly and
algebraically mon-linear, [27]. Then one solves the resulting system of nonlinear equations
by some numerical method.

The above transformation was proposed by H. G. Landau in 1950 and first implemented
using a finite-difference scheme by J. Crank in 1957. The one-dimensional transformation
introduced above is a smple case of more genera transformations that map curved shape
regions, in two or three dimensions, onto fixed rectangular domains and are commonly
caled body-fitted curvilinear transformations. A particular case of the curvilinear
transformations is the isotherm migrations method (IMM), in which the dependent variable
T, i.e., the temperature, is replaced with one of the space variables, e.g., X. In other words,
IMM, instead of expressing the time-dependence of temperature at a specific X, expresses
how a specified isotherm moves in the field. The IMM is particularly suited to melting and
freezing because phase front itself is an isotherm, provided the phase change takes place at
a constant temperature [33]. More details as well as the historical background are available

in[33].

Front Tracking Methods
Due to the underlying geometric nonlinearity of the problem, several approaches have been
devised with the aim of separating the problem into time-varying regions in which heat

conduction eguation is to hold, and to compute the location of the interface x = X(t)
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concurrently. These methods are referred to as front tracking schemes, because they
attempt to explicitly track the interface using the Stefan condition, [27].

These methods compute, a each step in time, the location of the moving koundary.
Using standard numerical methods, generaly, the moving boundary will be located
somewhere between the grid nodes and not necessarily exactly on them. Consequently
specia formulae are needed for calculation of derivatives. One approach isto fix the spatial
step, but alow the time step, to float in such a way that the front always passes through a
grid node. An example of this approach is the method of Douglas and Gallie [38]. Another
approach is to fix the time step and alow the spatia step to float, in fact, use two distinct
and time-varying space steps for the two phases. In these methods, e.g., the method of
Murray and Landis the number of space intervals is kept constant between a fixed and a
moving boundary. This way the moving boundary is on a grid node at al times [33]. For
more details and other methods of this category, as well as the historical background, see

[33]. Surveys of front tracking methods also appear in [39] and [35].

Difficulties Associated with the Front Fixing and Front Tracking Methods

All of these methods are effective for smple Stefan Problems set in the geometries where a
sharp front is expected to appear. In more realistic problems, it may sometimes be difficult
or even impossible to track the moving boundary directly if it does not move smoothly or
monatonically with time [33]. Presence of a time-dependent heat source (or sink) may

cause multiple fronts and disappearing phases;, mushy zones may appear, €tc. In other
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words, ared life phase change problem can easily become complicated enough to make a
classical, sharp front formulation impractical.

Moreover, front tracking methods often require complicated starting solutions [40].
Considering the difficulties that could occur for a dightly complicated one-dimensional
phase change problem, one can easily imagine how difficult treatment of such multi
dimensiona problems in this manner would be. The moving boundary may have sharp
peaks, or double back, or it may even disappear. The possibility, therefore, of reformulating
the problem in a new form of the equations, which applies over the whole of a fixed
domain, is an attractive one [33]. Fortunately a more general and versatile class of methods

isavailable for formulation of phase change processes: the enthal py formulation.

Enthalpy Formulation

This method of formulation eliminates the difficulties associated with the above approaches
because it bypasses the explicit tracking of the interface. The Stefan condition is not
enforced, but obeyed automatically. The enthalpy method is based on the method of weak
solutions. Weak solutions nuclested in late 1800's when David Hilbert first introduced the
idea of generalized solutions for the partia differential equations (PDE’s). Traditionaly, a
solution to a PDE was regarded as a continuous function with continuous derivatives that
satisfied that PDE in its domain of application. In the late 1800's, however, the need arose
to weaken these conditions and to define continuity at every point, in a more genera way,
by integrability over a set. The initiated ideas further evolved in the 1930's and 1940's,

mainly in the context of the calculus of variations and aso in problems described in terms
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of hyperbolic PDE, e.g., shock waves. The Stefan problems, however, were introduced to
the subject much later due to their highly nortlinear and nonstandard PDE types. The use
of enthalpy was proposed by Eyres et al. (1946) and later by Price and Slack (1954) [33]. It
was Kamin (1958) and Oleinik [41] who first introduced a weak formulation of the Stefan
problem, while enthalpy-based numerical methods were first proposed in [42]-[44]. For
more details on the history and mathematics of the subject see [27].

The enthalpy formulation in its simplest form can be presented as follows. Consider the
governing equation in a three-dimensional Cartesan coordinate system, i.e, the
conservation of energy, with the assumption of constant thermophysical properties within

each phase (the Fourier-Biot equation)

p I Tx Mo, V&EITO, THITO, (18)
It ﬂxe xg ye Tyg ‘Hze 1z

where ¢, k, and r are specific heat, therma conductivity and density of the material,
respectively, and ¢ refersto adistributed heat source (or sink) that may be present in the

domain. The left hand side of the above equation is related to the change of enthalpy. The

specific enthalpy may be defined as

h = Q cdT +f L, (1.9)

where L; is the latent heat of fuson and f equals 1 for liquids and O for solids. Using the

above definition, the governing equation can be written as
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where H =r h is the enthalpy per unit volume. To use the above equation when both

solid and liquid phases are involved, procedures are needed for both choosing the thermal
conductivity and caculating the temperature field from the enthalpy field. Since c is

assumed to be constant within each phase, the enthalpy of the liquid and solid, for a

material that changes phase at a single temperature T, , can be calculated from Eq. (1.9) as

N }
:rsgdcsdTg:rscsT
T T I
H =r, & c.dT+8c dT +L, 2 1.11
L L%Q s Qf L fﬂ ( )
rL(CsTf+CL(T'Tf)+Lf)

where subscripts L and S refer to liquid and solid phases, respectively. Therefore, the

temperature field can be calculated using the above equation as follows

|
| HE£Hq
]‘ r.SCS
T=i T, Hy EHEH, (1.12)
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where H, =r L(CSTf + Lf) and Hg =r c.T, are enthalpies of the fusion liquid and
fuson solid, respectively. These values can also be used in the numerica approach for
determining whether each grid element is solid, liquid or undergoing melting/freezing.

Corresponding thermal conductivities are then chosen for that grid element.
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Problems associated with the numerical modeling of the enthalpy method

Numerical application of these methods produces better results when the phase change
occurs within a temperature range. For situations where the phase change occurs at asingle
temperature, the phase front is a moving discontinuity. Consequently all of these methods
need specid (and most of the time case-dependent) adjustments in order to achieve
convergence, to maintain stability of the numerical solution [45], and to avoid oscillations
in the location of the interface. Usually, for suppressing these oscillations, schemes need to
be modified by incorporating a certain amount of artificial dissipation into the numerica
method. This, however, has a dilatory effect on the solution in the smooth regions and the
overal accuracy is consequently reduced. The ideal scheme would automatically add the
artificial dissipation, only in the vicinity of te discontinuities, (which are located in a
previoudy unknown region), and not affect the smooth regions. Has such a method ever
been designed? The smple answer is yes. In another, not far remote discipline, not very
long ago, a modern concept initiated what, we suggest, has the potentia to be used for
designing a very effective and generally applicable phase change scheme. This scheme will
be introduced in the next chapter.

Another well-known weakness mentioned for numerical smulations of the enthalpy
method is a convergence and accuracy problem at small Stefan numbers (the Stefan
number is defined as the ratio of sensible to latent heat), [46]. Thus, for a new adternative
general phase change solver, it is dso necessary to consider its behavior at the limit of

small Stefan numbers.
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1.3 The Space-Time Conservation Element and Solution
Element Method - An Innovative Numerical Schemefor Fluid

M echanics Problems

In 1991, at the NASA Glenn Research Center, Dr. Sin-Chung Chang introduced a new
method for solving the conservation laws in fluid mechanics [47]-[49]. Compared to other
numerical methods known to-date, the so-called space-time conservation element and
solution element (CE/SE) method possesses a distinguishing® festure: it treats the domain
of application of the PDE’s in a way that is most consstent with the physical nature of the
universe we live in. In other words, the CE/SE method sees the universe as a space-time
continuum and naturally treats the space and time directions similarly. As a very brief
definition, this method could be thought of as a means of solving the integral form of the
conservation laws over a space-time domain.

Between 1991 and today (2004), the CE/SE method has been applied to a range of
PDE's, mainly in the area of fluid mechanics. An overview of these applications, through
which the interesting and unique features of the method were observed and studied, are the

subject of the next sections.

! Certain finite element methods, e.g., Discontinuous Galerkin (DG) methods, share some of the features mentioned for the
CE/SE scheme. For detailed comparison of the CE/SE scheme to the traditional schemes see[79]].
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1.3.1 The CE/SE Method’sHistory

A brief review of the advances of the space-time CE/SE method, since its inception, helps
to provide an overall picture of the method’s capabilities. The fact that the CE/SE method
is being successfully applied to disciplines other than that where it originated from,
presents a strong confirmation of the method's robustness and generality. The following
contains some of these gpplications that have appeared to date.

In 1993, the CE/SE method was applied to Euler and Navier-Stokes equations in one
gpatial dimension [50]. The shock tube problem was then studied using this method [51].
At the same time the scheme was extended to two-dimensiond time- marching problems
[52].

In 1995, the method was extended in order to solve two-dimensional advection
diffusion problems [53]. An implicit solver was also built based on the concept [54]. The
CE/SE method’ s application in axisymmetric Euler time-marching problems appeared [55],
and research started to apply it to aeroacoustics problems [56].

In 1996, flows caused by shock-body interactions were studied using the CE/SE method
[57]. Its application in unsteady flows with chemical reactions started in 1997. Among the
new applications that appeared in 1998 are: shock reflection over a dust layer [58], free
shear flows, and ZND detonations [59]. Further, a CE/SE scheme, suitable for two-
dimensional unstructured triangular grids, was proposed [60], and a dambreak and a
hydraulic jump were ssimulated using the method [61]. The study of unstable detonations
using the CE/SE method continued in 1999 [62], aong with further applications in the

smulation of vortex dynamics in aeroacoustics [63]. It was in this year that three-
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dimensiona structured and unstructured CE/SE Euler solvers were developed ([64], [65]).
Moreover, the method was extended to two-dimensional viscous flows [66] and also used
as anew aternative for the NCC (National Combustion Code) solver ([67]-[69]).

Propagation of sound waves through a nozzle with/without a shock wave was resolved
using the CE/SE method in 2000 [70]. Further applications in this year also include
aeroacoustic computations of supersonic jets ([71], [72]), dong with successful attempts
for parallel computation [73] and local mesh refinement [74]. In addition to more recent
applications in inviscid and axisymmetric flows, ([75], [76]), the CE/SE method has been
applied to the solution of Maxwell’ s equations for electrical engineering problems [77].

A mathematical discussion on the convergence and error bound analysis of the CE/SE
method applied to a one-dimensional time-dependent convection-diffusion equation is
avallablein [78].

The studies and applications of the CE/SE method, during these years, proved and

reproved a number of distinguishing features that are summarized in the next section.

1.3.2 TheCE/SE Method’s Features

The applications mentioned above, in addition to establishing the effectiveness, robustness
and accuracy of the CE/SE method, reveaed that it possesses low dissipation and low
dispersion errorsin spite of its second order accuracy.

Furthermore, the method was shown to be capable of capturing discontinuities without
resorting to specia treatments [68], without oscillations and without affecting the smooth

solution within the region. This was best demonstrated in the method's capability of
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resolving weak disturbances along with strong discontinuities. This is in fact due to a
dissipation term that can be introduced in the scheme for automatically suppressing the
unwanted oscillations close to the discontinuities while being automatically negligible in
the smooth regions.

Among other favorable features of the CE/SE method, is the fact that its underlying
concept is easy to implement and easy to extend to higher dimensions. Furthermore,
computationally efficient explicit methods can be designed based on it, a feature vital to the
treatment of three-dimensional problems. Finally, the method is adaptable to unstructured
grids, a feature that smplifies treatment of complex geometries. It is also worthwhile to

briefly compare the CE/SE method to the well-known traditional computational methods.

In comparison with traditional computational methods.

The CE/SE method’ s both underlying concept and methodology of application are different
from finite difference, finite element, finite volume, and spectral computational methods.

In particular, finite difference, and spectra methods deal with the differentia
conservation laws. This ature, as mentioned in the comparison between classical and
weak formulations, introduces fundamental disadvantages when treating discontinuities.
The CE/SE method tregts the integral equations.

Furthermore, traditional methods either do not enforce flux conservation or enforceit in
gpace only. Finite volume methods treat the integral form of conservation laws and can be
designed to enforce flux conservation in both space and time. This process, however,

involves the ad hoc choice of a special flux evaluation model among many available
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models. In the CE/SE method, on the other hand, flux conservation is enforced both locally
and globally over space and time. This flux conservation enforcement is an integral part of
the process and no interpolation/extrapolation is needed. The CE/SE, in contrast to

traditional methods, is discussed in detail in [79].

1.4 Outline of dissertation

The remaining chapters are organized as follows. Chapter 2 is devoted to problem
satement and its physical modeling. It contains a brief introduction to the physica
phenomena involved in phase change, underlying assumptions used in modeling and their
evaluation, and finally the enthalpy formulation for both isotherma phase change and
phase change over atermperature range.

Chapter 3 provides the development of a one-dimensiona CE/SE phase change solver.
It contains analytical studies on the equivalence of the CE/SE formulation with the classical
formulation, as well as the stability of the method. It also contains numerical studies on the
convergence and accuracy of the method.

Chapter 4 presents the devel opment of atwo-dimensional CE/SE phase change solver. It
contains a detailed derivation of the method on unstructured grids, as well as detailed
numerical studies on the convergence and accuracy of the method.

Chapter 5 presents an axisymmetric version of the solver, since many phase change
problems can be modeled as axisymmetric. This chapter explores axisymmetric

formulation options and spots the option leading to a stable efficient solver. In addition to
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the derivation, numerica confirmations are also presented on the convergence and
accuracy of the axisymmetric scheme.

Chapter 6 presents the development of athree-dimensional CE/SE phase change solver.
It contains a detailed derivation of the four-dimensiona space-time scheme needed for
solving phase change problems in three spatia dimensions. As presented in the previous
chapter, the convergence and accuracy of the three-dimensional scheme is also assessed
numerically, by comparing the results to the available anayticad and semi-analytical
solutions for specific benchmark problems.

Chapter 7 addresses the second difficulty associated with the numerical modeling of the
enthalpy method, i.e. the limit of small Stefan numbers. As demonstrated in Chapter 4, the
numerical smulation of the Stefan problem using the CE/SE method is capable of
providing accurate results for both large and small Stefan numbers. However, for small
Stefan numbers, the accuracy had t© be improved by using an aternate method for
caculation of the first-order derivative terms. The original CE/SE phase change scheme,
like other numerical schemes for the enthalpy method, loses its second-order accuracy and
becomes dissipative for small Stefan numbers. The dissipation, nevertheless, is adjustable.
The adjustment, that was employed in order to obtain accurate results for small Stefan
numbers, is an ad hoc feature and therefore undesirable. Recently, space-time CE/SE
methods have been designed to solve fluid flow problems without being sensitive to the
size of the Courant number ([80], [81]). Using an analogous concept, it is possible to design
a CE/SE scheme that is, to a consderable degree insengitive to the size of the Stefan

number. In this chapter, the one-dimensional analytical studies of Chapter 3 are summoned
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again, and the dissipation of the original method is studied through numerical experiments.
The new insensitive CE/SE scheme is then described for numerical simulation of phase
change problems. A single-phase Stefan problem is selected as a benchmark problem for
comparing the behavior of the origina and the new scheme. Finally, the convergence and
accuracy of the new scheme is assessed without any case-dependent adjustment.

Chapter 8 is in redlity only a starting point for future work towards construction of a
genera phase change solver based on the previous developments. In this chapter, the
consideration of density driven body force problems is made. A full CE/SE Navier- Stokes
solver is derived. The program is vaidated for some standard benchmark fluid flow
problems, and is proved to be accurate and ready to be extended to study phase change

phenomenon.

The intention of this work isto lay the foundation for the design of a new generation of
more accurate, more efficient, and more generaly applicable numerical schemes for

moving boundary problems and, in particular, to phase change problems.



Chapter 2

PROBLEM STATEMENT AND FORMULATION

A model can at best be as good as its underlying assumptions [27]. Therefore, the problem
formulation needs to start by first providing a clear picture of which phenomena are to be
taken into account and which are not, and errors introduced because of the model
smplifications. Thus, in this chapter, an overview of the phenomena involved in a solid-
liquid phase change process is briefly presented and the relevant terminology introduced.
Then a summary of contributions of the mentioned phenomena to the model is given. The

problem is then modeled using the Enthalpy Formulation.

2.1 Physical Phenomena Involved in Solid-Liquid Phase

Change processes

Both solid and liquid phases are characterized by the presence of cohesive forces that keep
atoms in close proximity. In a solid the molecules vibrate around fixed equilibrium

positions, while in a liquid they are freer to move between these postions. The

29
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macroscopic manifestation of this vibrational energy is what we cal heat or therma
energy. Clearly atoms in the liquid phase are more energetic than those in the solid phase,
all other things being equal. Thus before a solid can melt it must acquire a certain amount
of energy to overcome the binding forces that maintain its solid structure. This energy is
referred to as the latent heat of fusion of the materia and represents the difference in
enthapy levels between liquid and solid states, al other things being equal. Of course,
solidification of liquid requires the removal of this latent heat and the structuring of atoms
into more stable lattice positions [27].

The phase-trangition region where solid and liquid coexist is cdled the interface. Its
thickness may vary from a few Angstroms to a few centimeters, and its microstructure may
be very complex, depending on severa factors (the material itsalf, the rate of cooling, the
temperature gradient in the liquid, surface tension, etc.). For most pure materias solidifying
under ordinary freezing conditions at a fixed Ty, the interface appears (locally) planar and of
negligible thickness. Thus, it may be thought of as asharp front, a surface separating solid
from liquid at temperature T;. In other cases, typically resulting from supercooling, or
presence of multiple components (e.g. in binary aloys), the phase transition region may
have apparent thickness and is referred to as a "mushy zone"; its microstructure may now
appear to be dendritic or columnar (shown schematically in Figure 2.1).

Severa mechanisms are at work when a solid melts or aliquid solidifies. Such a change
of phase involves heat (and often aso mass) transfer, possible supercooling, absorption or
release of latent heat, changes in thermophysical properties, surface effects, etc [27]. A

qualitative discussion of these follows.
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2.1.1. Heat and Mass Transfer

There are three possible modes of heat transfer in a materia: conduction, convection and
radiation. Conduction is the transfer of kinetic energy between atoms by any of a number
of ways, including collision of neighboring atoms and the movement of electrons; there is
no flow or mass transfer of the material. Thisis how hest is transferred in an opaque solid.
In aliquid heat can adso be transferred by a flow of particles, i.e. by convection. Radiation
is the only mode of energy transfer that can occur in avacuum (it requires no participating

medium) [27].

2.1.2. Variation of Phase Change Temperature

The transition from one phase to the other, that is, the absorption or release of

the latent heat, occurs at some temperature at which the stability of one phase breaks down
in favor of the other according to the available energy. This phase change, or melt
temperature T;, depends on pressure. For a fixed pressure, T; may be a particular fixed
value characteristic of the material (for example, 0°C for pure water freezing under
atmospheric pressure), or a function of other thermodynamic variables (for example, of

glycol concentration in an anti- freeze mixture) [27].
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2.1.3. Supercooling

Most solids are crystalline, meaning that their particles (atoms, molecules, or ions) are
arranged in a repetitive lattice structure extending owver significant distances in atomic
terms. In this context atoms may be regarded as spheres of diameter 2 to 6 Angstroms (1
Angstrom = 10'1° meters). Since formation of a crystal may require the movement of atoms
into the solid lattice structure, it may well happen that the temperature of the material is

reduced below T; without the formation of a solid. Thus, supercooled liquid, i.e., aliquid at

temperatures
| E | E |
(a) Planar (b) Columnar (c) Dendritic (d) Amorphous

Figure 2.1: Different microstructuresof the solid-liquid phaseinterface

below T; may appear; such a state is thermodynamically metastable [82], [83]. We note that
melting requires no such structuring, possibly explaining why superheating is rarely
observed. When crystallization does take place, if the latent heat released upon freezing is
sufficient to raise the temperature to Ty, i..e., the liquid was not cooled too much, the
temperature rapidly rises back to the melt temperature T;. Liquid cooled to a temperature so
low that the latent heat is not sufficient to raise its temperature to T; isreferred to as being

hypercooled [27].
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2.1.4. Variation of Thermophysical Properties

Most thermophysical properties of a materia (usualy varying smoothly with temperature)
undergo more or less sudden changes at T:. For example the heat capacity of auminum
changes by 11 % at its melt temperature (of 659°C), but that of silicon changes by only
0.3% (at 1083°C). Such discontinuities in thermophysica properties complicate
mathematical problems because they induce discontinuities in the coefficients of
differential eguations. However the most fundamental and pronounced effects are due to

changesin density [27].

2.1.5. Density Changes

Typica density changes upon freezing or melting are in the range of 5% to 10% but can be
as high as 30%. For most materias the solid is denser than the liquid, resulting in possible
formation of voids in freezing or breaking of the container in melting. On the other hand
water expands on freezing, resulting in broken pipes on cold days and ice floating instead
of filling the bottom of the oceans. The density variation with temperature induces flow by
natural convection in the presence of gravity, rapidly equalizing the temperature in the
liquid and greatly affecting heat transfer. In microgravity there is no natural convection but
Marangoni convection [84], due to surface tension (capillary) effects, may arise instead and
dominate heat transfer. All these effects may complicate a phase-change process beyond

our ability to effectively analyze them [27].



2.2 Underlying Assumptions

The phase change process considered here involves a PCM (phase change material) with
condant latent heat of fuson L; Supercooling effects and nucleation difficulties are
assumed not to be present.

The specific heats ¢, ¢, and thermal conductivities, k;, ks are assumed phase-wise
constant, allowing their discontinuity at the phase interface. This assumption is made only
for convenience. In fact the structure of the numerical scheme, easily alows for their
variation with temperature and/or spatial coordinates.

Heat is assumed to be transferred only by conduction. This is a reasonable assumption
for pure materials in small containers and moderate temperature gradients. It is aso
worthwhile to mention that this assumption can be relaxed by adding the mass transfer
equations and considering convection. The radiation heat transfer can also be added to the
model for analyzing more complicated situations.

For most of the cases modeled here, the fusion temperature is assumed constant.
Furthermore, most of the cases involve an isothermal phase change. The reason is that for
such cases the interface represents a moving discontinuity, for which the performance of
the numerical method needs to be studied. However, for generality, one case will be
studied later, in which the change of phase occurs over a temperature range, rather than a
single fusion temperature.

Dengity change due to phase transition is ignored. This is necessary in order to prevent

the movement of the fluid part. As discussed above, this assumption, although reasonable
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for many cases, may not be a good one for al cases. However, it helps to construct a less
complicated phase-change solver in order to study the behavior of the numerical scheme.
Once the scheme is well established, this assumption may be relaxed. This can be done
either by adding the entire fluid flow equations to the model, or by solving the mass

conservation equation on the interface, combined with modeling volume change effects.

2.3 Enthalpy Method

The enthapy method is used for modeling heat conduction with phase change
phenomenon. This method gives the solid-liquid interface as a part of the solution without
explicit tracking.

It is interesting, from a historical perspective, to note that originaly, this formulation
was not introduced for treating phase change problems. It was first devised, by Eyreset d.,
as an aternative formulation for the heat conduction problems where the thermal
conductivity varies with temperature. In fact it was used in conjunction with a method that
was afterwards became known as the Kirchoff transformation.

The governing equation, i.e., the conservation of energy, with the assumption of
constant thermophysical properties within each phase is the Fourier-Biot equation that for a

system with no energy generation is written in vector form as

r c— =N (kNT) (2.1
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where T is the absolute temperature, t denotes time, and ¢, k, and r are specific hest,

thermal conductivity and density of the material, respectively. The left hand side of the
above equation is related to the change of enthalpy. The procedure of the enthalpy method
starts by introducing an enthalpy function H(T), which is the total heat content, i.e. the sum
of the sensible heat and the latent heat of phase change. The specific enthalpy may be

defined as

ﬁ:dch+f L, (2.2)

where L, isthe latent heat of fusion and f , isthe so-called liquid fraction, which equals 1

for liquids and O for solids. Using the above definition, Eq. (2.1) can be written as

=N (kNT) (2.3)

where H =r h is the enthalpy per unit volume. To use the above equation when both
solid and liquid phases are involved, procedures are needed for both choosing the thermal
conductivity and calculating the temperature field from the enthalpy field. The specific heat
c is assumed to be constant within each phase. As mentioned in [85], the enthalpy can be

caculated from Eq. (2.2) as
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J é\TSf J u
H=r(1-f)QchT+rfoéQ chT+Lf+QSfCLdTg 2 2

=rfcg- (co-c )f T +rf [(Cs - )T +|-f]

where subscripts L and S refer to liquid and solid phases, respectively. For an isothermal
phase change, Ty, °© T, isthe fusion temperature of the material. For a non-isothermal
phase change, the fusion occurs over the temperature range T, £T £T,, and the liquid

fraction, f , changes from being a step function to other forms that may or may not contain

adiscontinuity (see Section 2.5).

2.4 |sothermal Phase Change

For amaterial that changes phase at a single temperature T, , the enthalpy of the liquid and

that of the solid, can be calculated from Eq. (2.4) as

T .
He = rsga chTg= r T
HL:rLgaT' chT+chdT+Lfg (25)

=1 (T o m-T)+ L)

For this type of problem, the temperature field can be calculated using Equation (2.4) as

follows
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i
: HEH,
l rcS
T= T, Hy EH£H, (2.6)
((H- H,)
|_ +T, HeH,
f re,

where H, =r (CSTf +L, ) and Hy =r c,T, areenthalpies per unit volume of the fusion

liquid and the fusion solid, respectively. These values can aso be used in the numerica
approach for determining whether each grid element is solid, liquid or undergoing
melting/freezing. Corresponding thermal conductivities are then chosen for that grid
element. For elements that are undergoing phase change, an average thermal conductivity

is used.

2.5 Phase Changeover a Temperature Range

For this type of problem, when only one phase exists, the temperature can be calculated as
explained above. In the mushy zone, however, the liquid fraction needs to be defined at
each point. As mentioned in [86], the liquid fraction can be a function of a number of
solidification variables. In many systems, however, it is reasonable to assume that the

liquid fraction is a function of temperature alone, i.e.,

10 HEH,
f=1F(T) Hy EHEH, 2.7)
11 H3H,
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where Hg and H |, are determined from Eq. (2.4) by substituting (f =0,T :Tsf) and
f =17 =T, ), respectively.

The function F(T) can assume a number of possible forms, e.g., linear, power, etc.,

depending on the equilibrium phase diagram of the specific materials involved ([85], [86]).
Once the enthalpy field is determined using the numerical solver at each time step, the

temperature field needs to be determined. Unlike the isothermal phase change case, an

explicit expression may not be available for the temperaturewhen Hy £ H £ H; , dueto

the possible complexity of the function IE(T) . Therefore, a subprogram needs to be linked
to the main solver, for iterative treatment of EQ. (2.4) in the mushy zone. For this purpose, a

number of iterative schemes were tried with different forms of F(T). Although
computationally ~ efficient iterative schemes provide convergence for linear F(T),

difficulties arise while handling highly nontlinear forms of IE(T). Extremely flat/steep

portions of the liquid fraction curve can greatly dow convergence. In order to overcome
this difficulty, the following numerical technique was used:

First a sorted array was generated for enthalpy over the mushy zone's temperature
range. Then at each time-step, after updating the H-field, for each node that fals in the
mushy zone, a bi-section search routine was used to determine the corresponding position
within the pre-caculated enthalpy aray. A linear interpolation then suffices for
determining the temperature. While the bi-section search guarantees the computational

efficiency of the routine, the discrete pre-calculated enthalpy array can be refined to
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provide the desired accuracy. The discrete nature of pre-caculated enthapy array
eliminated the difficulties associated with the flat/steep portions of F(T), and therefore,

the routine is effective regardless of the specific shape of the liquid fraction curve. As an

example, see section 3.4.3.

In the next chapter, numericd modeing of the problem is initiated, starting by

development of a one dimensional CE/SE phase change solver.



Chapter 3

ONE-DIMENSIONAL CE/SE PHASE-CHANGE

SCHEME

It is of value to start the application of the numerica method considering the smplest phase
change problem, i.e, that of a one-dimensional Cartesian geometry. In this chapter, the
equations describing this category of problems are briefly reviewed. The space-time CE/SE
phase change scheme is then developed for the one-dimensiona governing equations. The
study of the behavior of the numerical scheme is divided into two parts: 1) Analytical

study, and 2) Numerical study.

1) Analyticad study of the scheme, presented here, contains three parts. @ a
mathematical proof on the equivalence of the CE/SE formulation of the enthalpy
method with the conventional formulation, both for cases without discontinuity and
cases having a discontinuity in the domain, b) a von Neumann stability analysis on
the linearized versions of the phase change scheme. This study leads to derivation
of a necessary stability condition, ¢) a study of the dissipative and dispersive
behavior of the numerica scheme for different Stefan numbers. Parts, (a) and (b)

are presented in this chapter while part (c) is contained in Chapter 7.

41
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2) Numerica study of the scheme consists of application of the actual phase-change
scheme to several cases for which an analytical solution is available. This way, the
accuracy of the method is assessed. It is also shown that no non-physical waviness
is detected using this method, in predicted profiles for temperature and enthalpy.
Further, a numerical study is presented on the convergence of the scheme for
different time-steps, leading to a procedure for selecting the optimum time-step for
the fastest convergence. Finally, one case is studied which involves phase change
over atemperature range rather than a single fusion temperature.

At the end of this chapter, the knowledge extracted from the study of the one-dimensional
scheme, provides the groundwork for extending the method, to higher dimensions and

more general phase change problems.

3.1 Development of a One-Dimensional CE/SE Schemefor

Heat Conduction with M elting/Freezing

The governing equation (Eq.(2.3)), for one spatial dimension, is written as

m_Jglo (3.1)
ft = fixe o

Equation (2.6) can be used without change.
Considering (x, t) as the coordinates of a two-dimensiona Euclidean space-time, the

computational grid that is used here can be regarded as a staggered two-dimensional
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rectangular mesh. Figure 3.1 shows the computational molecule of this grid for the grid

node (j, n). Define vector U as

U =(F,H) (3.2
where H is enthalpy per unit volume and
RILE
F= 1% (3.3)

isreferred to as the flux function. The integral governing equation can then be written as

= @yY-fids =0 (34

W(CE)

where W(CE) is the boundary of the rectangle ACDF that represents the conservation
element (CE) for node (j, n), see Fig. 3.1(a). Vector A=(n,n) represents the unit outward

normal to the CE, and ds denotesaline element on W(CE).

For discretization, enthalpy and the flux function are represented on each solution element

(SB)[79], &s

Y (ot )= Y P (Y - )+ (v k- x) (3.5)



where Y can be either H or F, and the notation Y (X, t; j, n) is adopted from [87]. The
subscripts x and t are shorthand notations for the corresponding derivatives.

Figure 3.1(b) provides a sketch of the solution element related to node (, n). The
solution elements need to be defined in order to assign a unique discrete value to the field
parameters at each grid node?. Using the SE s, consider that the line segments FA and AB
belong to SE (j-1/2, n-1/2), that the line segments BC and CD belong to SE (j+1/2, n-1/2),
and that the line segment DF belongs to SE (j, n). The unit outward normals are
Axg =Age =(0,-1), A =0, fyr =(0D, and f, =(-10 . Equation (3.4) can then be
written as

| = (‘) H(xtj-1/2n-1/2)dx+ (‘) H(xt;j+1/2,n- 1/2)dx+

AB BC
Jxti+U2,n-1/2)dt+ Gyt (xt; j,n)dx+ (3.6)
CD DF

(‘) F(xt;j-1/2,n-1/2)dt=0
FA

Using Eq. (3.5), the above becomes

n-1/2 n-1/2 ( ] [ n-1/2 n-1/ ( )]
[HJ 175 +(Hy )J 1/2\X= Xj. 1/2 dx + O HJ+1/2+ ),+1/2 X= Xja1/2 )] dX+
AB

BC
d':ﬂll//zz*‘(':t)l;é;g(t t" 1/2)] dt + den*'(H )j (X Xj )] dx+ (3.7)

DF
O [F1n11//22+ (R)}- H S tnhllz)] dt=0
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Note that we are using a regular grid in the sense that the solution points®, (points on which

the solution is saved), and the cell centroids are coincident. Also note that |AB| =|BC| =

?x/2 and |CD| =| FA| = /2. Using these, we get

n1/2
j-u2

n-1/2
j-1/2 ©

n-1/2
j+1/2

1= 2 F 2

D x n-1/2 (AB)
'7(Hx)j-1/2 c

Xj-1/2 (H

n-1/2 _

n-1/2
{ [F,+1/2 - Fi2

(Ft)T vzl g

- DX(HX)

+(CD) [(Ft n-1/2

j+l/ 2"

Noting that x(*® =x.;,, +Dx/4, xE9 =x;,y,- Dx/4, xPP =x

the above equation becomes

Dxj Dx 12
|:_ IHnl/2 H(1112+ [H r.'l'

2 T j-1u2 j+1/2 4 ( X)J-l/2
+ Dt IFn—1/2 Fn-1/2 Dt[ n-1/2 _
7% j+1/2 jrrz T\t a2 T

rearrangement results in

Dx
7(H )hiy5 XBY +DxH [ +Dx(H,)]

2 )

n—1/2]

- Xje1/2 (H X)j+1/2

x (OF)

b (338)

(e )]

,and P =t"V24px/ 4,

n 1/2
]+1/2

- (H, ] +DxH
b (39)

n 1/2

11/2]%

2 More details on the solution elements are available in Chapter 4, where the two-dimensional cases are studied.

3 More details about the sol ution points are available in Chapter 4, were the two-dimensional cases are studied.
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a1 o Dx n- n-1/2] 0}
Hj :E,:%Hj-ll/lzz + Hj+11//22 +T[(Hx)j-i;§ - (Hx)jé;g]g
(3.10
) Dt 1Fn-1/2_ Eri2 Dt[(F )n—l/2 ) (F )n-llz]U
m% j+1/2 j-1/2 T t/j+1/2 t j-l/2%

The above equation contains derivatives that need to be caculated. In the CE/SE method,
the derivatives are treated as independent variables that are solved for. Also note that, based
on Eq. (3.3), calculation of the first-order derivative of F, (needed in Eqg. (3.10)), involves
calculation of the second-order mixed derivative of the temperature. The following two

sections contain procedures to treat the derivatives.

3.1.1. First-Order Derivatives

The firg-order derivatives, are calculated using the following weighted average formula

(Y )r=(v; )t we+(y; ) w (3.11)

with

(3.12)

and
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b = el =t 29

Note that, to avoid dividing by zero, in practice a small positive number such as 102 is
added to the denominator in EqQ. (3.12). The parameter Y , in the above relations, can be
gither H or T. Thevalue of a is usudly set equa to 1. As mentioned in [69], the above
weighted average provides the necessary numerical damping. In other words, a can be
regarded as an adjustable dissipation parameter. In Chapters 4 and 7, we will return to this
parameter and study its effects in more detail; unless mentioned otherwise, its value is set

to unity.

3.1.2. Second-Order Derivatives

The second-order derivatives, required for calculation of F; are determined using a method

explained below.

n-1/2
jx1/ 2

Using Taylor series to expanding (T,) about the space-time solution point (j, n), the

following relation can be written.

(Tx) Tiijz ; (Tx) T = (Xjars2 - Xj)(Txx)r; T

which results in the following system
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n- n D n Dt n
) ) =+22 () 2 19

Adding the two equations in the above system leads to
()7 =2(r)}- () TH- ) iil/or e

Therefore, the scheme is built by Eqg. (3.10), with derivatives determined from Egs. (3.11)-
(3.16).

There exists a'so another method for treating the second-order derivatives by ignoring
them on the solution elements [66]. Both methods were tried numerically. The first method
results in dightly higher accuracies, (the truncation errors were used as a measure for the
accuracy). The second method offers dightly faster convergence rates, and of course it goes
through a smaller number of computations. Because the difference in the computationa
times between these two techniques is not significant, the more accurate scheme will be

used, unless mentioned otherwise.

3.2 On the Equivalence of the CESE Formulation of the

Enthalpy M ethod with the Conventional Formulation

In 1975, Shamsundar and Sparrow [88] provided a demonstration of the equivalence

between the enthapy method and the conventiona form of the energy conservation
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equation for the case of a substance with a discrete phase-change temperature. For this
purpose, they applied the enthapy form, first to a control volume, fixed in space, which did
not contain the interface, and then to another control volume through which the interface
passed. In the first case, because of the continuity of enthalpy and partial derivatives of the
temperature, the Green's Theorem [89] can be applied to the integral form, thus, the
conventional form readily results. In the second case, because of the discontinuity in the
enthalpy, the conditions needed for validity of the Green’s Theorem [89] are not satisfied.
For this case, Shamsundar and Sparrow moved the interface in time and studied the limits
of the conservation laws as the time increment vanished [88].

The space-time nature of the CE/SE method’s conservation elements alows us to
demongtrate that proof in a more straightforward manner. Since the time dimension
materializes in the shape of the conservation element, the manual movement of the phase
interface to a new time can be dispensed with. Note that, athough the proof is provided
here for a one-dimensional Cartesian problem, it can be extended without difficulty to
higher dimensions.

Consder a one-dimensional heat conduction problem involving solid-liquid phase
change, for a materia that changes phase at a single fusion temperature, T;. Identical and
uniform densities are assumed for both phases while other physical properties can vary
with phase and/or temperature. The classical formulation provides the following governing

equations in the solid region, in the liquid region, and on the phase interface.

In the liquid region:
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1T _TF
rc—+—=0 31
o X (3.17)
In the solid region:
1T TF
rcec—+—=0 3.18
st (3.18)
On the phase interface:
T(X(t),t)=T, (3.19)
and
rL, d x(t) =F - Fg (3.20)

where T denotes temperature, t istime, and Ly, ?, ¢, and k are latent heat of fusion, density,
specific heat, and conductivity of the material, respectively. X(t) denotes the location of the
phase interface at time t. Subscripts L and S refer to the solid and liquid phases and F is

defined as

F=- kﬂ (3.21)
9 x

A differential space-time conservation element of the CE/SE method can be visualized as

rectangle ABCD shown in Fig. 3.2.
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Points A and B are at timet, while points C and D are the same spatial nodes at timet + dt.
Considering (X, t) as coordinates of atwo-dimensional Euclidean space-time, as mentioned
in the previous section, the CE/SE formulation provides the following integral equations

over the space-time conservation element.

N-UdA=0 (3.22)
S(ABCD)
and
g} -fids =0 (3.23)
w

where SABCD) and W denote the surface and the boundary of the rectangle ABCD,
respectively. Further, dA and ds denote surface and line elements on SABCD) and w,
respectively. The unit outward normal of the rectangle is referred to as A4 and U = (F,H).

Enthalpy per unit volume, H, is defined as

T

H=g{r cdT+rLd(T-T Jar (3.24)

where d is the Dirac impulse function.
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First consider the conservation element ABCD with no interface passing through it.
Since ABCD is an arbitrary conservation element, readily it can be seen that EQ.(3.22)
leads to the differential form of the governing equation. Since no interface exists, it aso
follows that the Greesn’s Theorem holds ard EQ.(3.23) is equivalent to EQ.(3.22). Now
consider the case where the phase interface falls in the conservation element ABCD. For
example, as shown in Fig. 3.2, let the interface be located at point S; at timet, and at point
S, a time t + dt. Without any loss in generdlity, it can be assumed that the portions of the
rectangle ABCD that are to the left of the line segment $,S,, are in the liquid phase while

the right portion is solid. Equation (3.23) can then be written as

Hs - Aids + - fids =0 (3.25)

Ws Wi

where Wgand W, represent solid and liquid portions of W, respectively. On the other
hand, Eq. (3.23) can a'so be applied to the liquid conservation element AS S,;D , aswell as

the solid conservation lement S;S'BC, where plus and minus superscripts relate to the

immediate liquid and solid neighborhoods of the points S; and S, respectively.

¢}, - Aids =0 (3.26)

W +S
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fYs - fids =0 (3.27)

Ws+S"

where S” and S* arethelinesegments S;S; and S;'S;", respectively. Adding Egs. (3.26)

and (3.27) and subtracting Eq.(3.25) from the resultant relation, provides

J. - Ads + (Y, - fids =0 (3.28)
S’ s*
o , ~_ Gt~ dx - . .
Note that for the first integra in Eq. (3.28), n —d—l iy j isthe unit norma outward to
S S
_ , . . A dt ~ dx - . .
the liquid region, while for the second integra n=- d—l +d— J is the unit normal
S S

outward to the solid region. Equation (3.28) then becomes

J(Ft - Hdx), +(- Fdt+ Hdx) ¢} = 0 (3.29)
55,

Sincetheline segment SS, isan arbitrary part of the interface, the above equation implies

the following condition, everywhere on the two sides of the interface.

[(th - Hdx), +(- Fdt+ de)s] ss, = 0 (3.30)



Equation (3.30), taking into account EQ. (3.24), gives the classical jump conditions at the

interface, i.e.

édx _F - Fg

A1 = 3.31
gdt Hs132 rly ( )

Note that since the dope of $S; is in fact the speed at which the interface moves during
time dt, Eq.(3.31) is equivalent to Eq. (3.20). The equivalence of EQ.(3.23) with Eq.(3.22),
can then be verified as follows.

The Green’'s Theorem holds in the liquid conservation element AS S;D, aswell asin

the solid conservation element S;S'BC. Therefore Egs. (3.26) and (3.27) can be

substituted by the following two equations respectively.

N-Uda=0 (3.32)
S(AS; S; D)

oN-UdA=0 (3.33)
S(S;§'BC)

Adding the above two leads to Eq. (3.22).
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Alternatively, Eqg. (3.22) can dso lead to the conventional form with the jump
conditions. The proof would not be different from that provided in [33] for the weak

solutions.

3.3 von Neumann Stability Analysis

The von Neumann analysis [90], is mainly employed for stability analysis and can provide
a necessary stability criterion for alinear scheme. Of course the analysis can not be applied
to an actua phase change problem because of the geometric nonlinearity involved.
However, application of the analysis to a smplified case of a heat conduction problem,
non-dimensionalized using the Stefan number in its time scale, can reved a great dedl
about the stability and dissipative/dispersive behavior of the numerical scheme.

Consider the heat conduction equation, Eqg. (2.1), in one spatial dimension. A non

dimensional form, adopted from [27], uses the following norn-dimensional parameters

at . _T-T .
_21 :—fyand X :1 (3.34)
L Tg - T L

where a denotes the diffusivity, L is an appropriate length scale, T; represents the fusion

temperature of the material, and T« IS a reference temperature. The Stefan number S is

defined as
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St _ C(Tref. - Tf) (335)

The non-dimensiona equation, then becomes

. -
mwo_1%T (3.36)

Tt S 2

Application of the CE/SE scheme to EQ.(3.36) results in an equation anaogous to

Eq.(3.10). Dropping the * superscripts, the scheme to be analyzed, becomes

n 1 n- n-
T =E(Ti-ll//22"'-l_j+1l//22)"'
a X Dt 0 N .
oSl ew
O [ )z - )]
T L L

with the firg-order derivatives from Egs.(3.11)-(3.13).

The second-order derivatives can be determined using each of the two methods
mentioned in Section 3.1.2. In particular, selection of the second (less complicated) method
of Section 3.1.2, leads to a scheme involving only two time levels, i.e, time level n and

timelevel n — 1/2. Usage of Eq. (3.16), on the other hand, results in a scheme involving
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three time levels, i.e., time levels n, n — 1/2, and n — 1. Both methods are applied and
studied in the following sections.

Further, sdlection of different vaues for a* in Eq. (3.12), can lead to different schemes.
In particular, @ =0 leads to linear schemes, while nonzero values for a cause non
linearity in determination of the first-order derivatives. Both situations are studied in the

following sections.

3.2.1 Linear Schemewithout Second-Order Derivatives

Among the variations mentioned in the previous section, the smplest one is a linear
scheme without second-order derivatives. In order to generate this scheme, set the second-
order derivatives, in EQq. (3.37) equa to zero. Further, substitute for the first-order

derivatives from Egs. (3.11)-(3.13), using a =0. The scheme becomes

1
n — n-1/2 n-1/2
Tj _E (Tj-1/2 +Tj+1/2 )+

- o 6 (3.39)

S8 2000 5 5

n-1/2 _ n-1/2 _ n-1/2
feT, TR T

j+1

The von Neumann analysis can then be applied to the above equation by substituting
T = A"e'" , where A is the disturbance amplitude, i =+~ 1, and q is the wave number

multiplied by Dx. After algebraic manipulations, the amplification factor, G, is found as

follows
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_A
An—1/2
1 a Dt 0 (3:39)
:_(e-iq/2 +eiq/2)+ 4 . i(2- e il _ gl
2 5 200" 55
Now using €™ =cos(mq) + sn (mq) in the above equation we get
G =cost+s ?fL cos? 19 (3.40)
2 =) 29
where
sol 2Dt (3.41)
2 (X" s

Two conclusions may be drawn from Eq. (3.42): one regarding the necessary stability
condition and the other regarding the method’s dissipation and dispersion. The former is
found by requiring |G| £ 1, or

-1£G£1 (3.42)

Thisinequality can be studied in two parts:
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a) G £1.Using Eq. (3.40), we get

cos +5 8- cos’ 994
2 e 29
or
- 1+cost+s 83 cosq—ggucosﬂgEO
2 e 2 ge 29

or

gi— cosgg?— 1+s gi+cosg(+y£0

3 2

298

Since 1- cos% 3 0, for the above inequality to hold, we need

- 1+s (?H COSEQEO
e 29

or

S ff[+ cosa 21
é 2p

But, since

0E£1+ cos%E 2

(343)

(3.44)

(3.45)

(3.46)

(347)

(3.48)
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for inequality (3.47) to hold we need

s £= (349

Considering Eq. (3.41), and the fact that the S number is defined to be positive, it follows
that inequdity (3.49) aways holds. Therefore, part (d) does not lead to any stability

restriction.

b) G 3 -1.Usng Eq. (3.40), we get

cos I +s cl- cos?39s -1 (3.50)
2 =) 20
or
8?‘H cosﬂgé +s gi cosq—g% 0 3.51
g 2@81 2 (351)

Since, 1+ coqu 3 0, for the above inequality to hold, we need

1+s &- cosas 0 (352)
e 2g
or
s Rost - 19¢1 (353)
e 2 g

To study the above inequality, consider the following two cases:
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i)s 3 0.Since coqu- 1£0, for this case inequality (3.53) holds and therefore it does not

lead to stability restriction.

i) s <0.Snce

_2f cos% _1£0 (354)

the worst case for (3.53) would be when coqu - 1=-2, whichleadsto

-2s £1
or
-1
s 3 — 3.55
> (355
or, using Eq. (3.41),
D—t2£1 (3.56)
(bx)* s 2

Inequality (3.55), can be obtained, alternatively, as follows®

4 This procedure was provided by Dr. Sin-Chung Chang in his review comments.
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Consider inequality (3.53). If cos%- 1=0, (3.53) holdsfor al s . Now consider all cases

where
coqu- 110 (3.57)
Inequality (3.54), then becomes
_2f cosO'E - 1<0 (359)

Using (3.57) and (3.58), inequality (3.53) can be written as

s 31 (3.59)
cosq— -1
2
Further, (3.58) yields
- % 3 L (3.60)
cosg -1

Considering (3.59) and (3.60), one concludes that inequality (3.55), (and therefore, (3.56)),

is the stability restriction.
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Figures 3.3-3.5 demongtrate plots of the amplification factor G, (see Eqg. (3.40)), versus
the Stefan number. These figures contain a graphic representation of the stability criterion

in Eq. (3.56). Figures 3.3-3.5 are generated for Dx = 0.05and different time-steps. For
example, Fig. 3.3 shows that, for Dt =103, reduction of the Stefan number to values

smadller than St* @0.77, leads to unstable results. This minimum Stable Stefan number,
(S/), reducesto 0.08 for Dt =10 *, as seen in Fig. 3.4. Therefore, derivation of Eq. (3.56)
is graphically confirmed. By reducing the time-step to Dt =10 °, assown in Fig. 3.5, even
for § =0.01, which is the smallest Stefan number used in generating this figure, the
stability criterion till holds.

Numerical experiments were also performed in order to confirm the above anaysis.
Considering (3.56), it is seen that the numerical examination should be done in two steps:
1) study of the effect of the Stefan number on the stability while the spatial increment is
fixed, and 2) study of the effect of the spatial grid spacing on the stability while the Stefan

number is fixed. The results of these numerical experiments are presented in Tables 3.1 and

3.2.

Dt
Dt TSz o
Stefan number | (edge of stability) (Dx)" s,
(edge of stability)
0.01 5.04 x 107 0.5040
0.1 5.04 x 10 0.5040
1 5.04 x 107 0.5040
10 5.04 x 10~ 0.5040

Table 3.1: Numerical experiments of stability: effect of the
Stefan number



ot Dt
Dx 2
(edge of stability) (Dx)* s,

(edge of stability)

% 5.04 x 1072 0.5040

2% 1.25x 107 0.5000

% 5.55 x 10 0.4995

% 3.125x 1073 0.5000

Table 3.2: Numerical experiments of stability: effect of the
spatial increment

Table 3.1 presents the time-step, at the edge of dtability, for a spatial increment
Dx=0.1, for different Stefan numbers. These results show that, for a specified spatia
increment, smaller time-steps are needed for stability, as the Stefan number is reduced.
Further, the stability criterion of (3.56) is also confirmed, on a fixed spatia grid.

Table 3.2, on the other hand, is generated for caseswith S =10, but on different spatial
grids. Using these cases, the dependence of the time-step at the edge of stability, on the
gpatial grid spacing, is examined. Results confirm that, (3.56) holds, for a fixed Stefan
number. Combining results of Tables 3.1 and 3.2, the stability criterion of (3.56) is
confirmed.

It is worthwhile to note that, the above condition may not be sufficient for the stability

of the original phase change scheme, or even the heat conduction equation in higher

dimensions. It can, however, be used as a starting point. It also shows that by reducing the
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Stefan number, while using the same spatial increments, stability may require smaller time
increments.

The amplification factor in Eq. (3.40), aso reveds insght regarding the
dissipative/dispersive behavior of the scheme. In Chapter 7, we return to this analysis and

use it to study dissipative/dispersive behavior of the numerical method.

3.2.2 Linear Schemewith Second-Order Derivatives

The equation for this scheme can be generated by subgtituting for the second-order
derivatives in Eq. (3.37), from Eq. (3.16). The first-order derivatives are treated similar to

Section 3.2.1. The scheme becomes

1
n — n-1/2 n-1/2
Tj _E (Tj-1/2 +Tj+1/2 )+

2 3Dt 9 n- n- n-
g —2_ (ZT] /2 _ Tj_ll/Z - Tj+1l/2)+ (361)
8 4(Dx)? S5

Dt (
8(Dx)? s

n-1 n-1 n-1 n-1
Tj—1/2 +Tj+1/2 - Tj—3/2 +Tj+3/2)

As can be seen, three time levels are involved in Eq. (3.61). Similar to Section 3.2.1, the

von Neumann analysis can be applied to Eq. (3.61) to produce

n

W: cos% +s_(1- cosq) +
1 . (3.62)
Dt A q 306

&
0S— - COS———+
4(Dx)? 5 A2 %2 2 o
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where
gol 3D (363)
4 2(Dx)* s
An Al’l-l/2
Assuming G° AT @ AL Eqg. (3.62) can be written as the following quadratic
equation.
5 _ y 390
G?- Cosd+5(1- cosq)le- ——— &osd - 00s2992-0 (364
g 2 ( q@ 4@@233 2 2 o (369

Solving Eq. (3.64) produces

coqu+s_ (1- cosq)+

1
2

: (3.65)
\/ gcosqz +5(1- cosq )y, +L€:%osg- cos>9.9 ¥

H (Ox)2sé 2 2 g

The above amplification factor, although too complicated for anaytical stability analysis,
can be studied numericaly. Figures 3.6-3.8 contain plots of the amplification factor of Eq.
(3.56), versus the Stefan number, using the negative sign. Usage of the positive sign shows
a scheme that is stable even for relatively large time-steps. This behavior is incons stent
with the numerical experiments. The positive sign was, therefore, discarded. All figures are

generated using Dx=0.05. A pattern smilar to Figs. 3.3-3.5 is dso seen in Figs. 3.6-3.8.
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Again, in Figs. 3.6 and 3.8, the value of S leads to a stability criterion as follows. In Fig.
3.6, the stability is confirmed for Stefan numbers larger than 0.86. In other words the

. o . Dt -3 .
stability criterion can be determined as £ 10 @0.465. A smilar

(Dx)* s (0.05° " 0.86

Dt 5°10*
(Dx)* s, (0.05°" 043

caculation, for Fig. 3.7, provides @0.465. Findly, the time-

step is reduced to 1.1 10" ° in Fig. 3.8. For this case the stability criterion holds, even for
the smallest Stefan number present in the figure, that is S =0.01. These figures aso

contain information about the dissipative / dispersive behavior of the scheme as discussed
in Chapter 7.
Numerical experiments were also performed for this scheme. Again, it was seen that

reducing of the Stefan number, has a destabilizing effect. The results were similar to Tables

3.1 and 3.2, except for the value of a the edge of sability. In fact, the

Dt
(Dx)* s

numerical experiments determined the stability criterion for this scheme to be

Dt
——  £0.4667 (3.66)

(Dx)* s

Therefore, addition of the second-order derivatives to the scheme has, as expected, a

destabilizing effect.
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Further, the values 0.4667 agrees with the value graphically extracted from Figs. 3.6-

3.8, based on the analytical amplification factor of Eq. (3.56).

3.2.3 Non-Linear Scheme without Second-Order Derivatives

In order to generate this scheme, set the second-order derivatives, in Eq. (3.37) equa to
zero. Further, substitute for the first-order derivatives from Egs. (3.11)-(3.13), using a =1.

After substitutions, the scheme becomes

Dt O,
(Ox)’s 5

DD D

J

n — 1 n-1/2 n-1/2 ﬂ
T, —E (Tj-1/2 +Tj+1/2 )+§Z'

(T,'r]_ﬁ/zz ) Tjr]-ll/z)eT(Tjn-l/z ) Tjrj_11//22~)+ (Tjn-1/2 ) T]nﬁlzz): (—l-jrj-lll/zz ) Tjrj—llIZ) .
(Tjr]-l%/zz ) -I-jr]-ll/z)a N (-I-jn-1/2 ] T]nl]/-/Zz)
(Tjrl-llllzz ) Tjn-1/2)5 (-I-jrl-11/2 ) Tj'l-ﬁ/zz)"' (Tjn+-11/2 ) Tj'l-ﬁ/zzy (-I-jrl-lll/zz ) Tjn-1/2) y
(—I-jrl-llllzz ] Tjn-l/z)ff N (Tjrl-ll/z ] Tjr:l$/22)~ H
andusing a =1
Tjn = % (Tjr]_lyzz + Tjrl_lyzz ) + ?Z - ﬁg
2(1_1"?-11//22 B lej-lllz)(Tjn- - Tﬁjlzz) _ (3.68)

(D«D> (D~

_ T_rj-l/Z +T-n_1/2
j-1 J
n-12 n-1/2 n-1/2 n-1/2 <

2(T1'+1/2 - TJ’ )(Tj+1 - Tj+1/2) y

u
TrU2 i u
R j+1 u
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As can be seen, the above equation is non-linear and, therefore, the vorn-Neumann analysis
is inapplicable. Numerical experiments need be used for stability analysis. These
experiments result in a stability criterion similar to the linear scheme without second-order
derivatives, see Section 3.3.1.

The difference between this scheme and the corresponding linear scheme, explained in
Section 3.3.1, is seen for time-steps larger than that required for stability. In the linear
scheme, time-steps dightly above the edge of stability, cause unbounded rapid growth in
the errors. In the nonlinear scheme, there is a zone of time-steps, above the edge of
stability, that result in nonvanishing, but bounded, errors. This comparison shows that the
nontlinear scheme has higher dissipation compared to the linear scheme, whereas the linear
scheme has more dispersion.

3.2.4 Non-Linear Schemewith Second-Order Derivatives

Findly, this is the actua scheme used throughout this thesis. Similar to the previous
section, the nontlinearity inherent in this scheme makes the von-Neumann stability analysis
inapplicable. Numerica experiments confirm that (3.66) is ill valid as the dtability
criterion for this scheme.

Similar to the previous section, the difference between this scheme and the

corresponding linear scheme, explained in Section 3.3.2, is seen for time-steps larger than

. - . Dt
that required for stability. In the linear scheme, for example, —ZSt > 0.4668 leads to

(Dx)

unbounded rapid growth of the errors. In the non linear scheme, on the other hand, for
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Dt , :
0.4668 £ ————— £ 0.6550 the errors remain bounded and the rapid unbounded error

(Dx)* s

growth does not start until > 0.6550. This comparison, again, shows that the

Dt
(bx)* 5
nontlinear scheme has higher dissipation compared to the linear scheme, whereas the linear

scheme has more dispersion.

3.4 Validation tests

To assess the accuracy and effectiveness of the CE/SE method applied to conduction
problems with phase change, severa classical cases were studied. The results were
compared to anaytica solutions and the method was found to be accurate, robust and
efficient. Details of the validation tests, as well as humerical study of the convergence and

error behavior follows.

3.4.1 Steady Linear Case

To validate the program, it is good to start from a very simple problem. For our case, that

would be alinear steady state conduction problem without phase change, i.e.,
H=TandT=x (3.69)

Obvioudly, thisdistribution satisfies the governing equation (Eqg. (3.1)). Using Eqg. (3.3) for

unit conductivity, the following flux functions are obtained
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F=-Ty=-1,Fx= -Twx=0,andFi=-Tx=0 (3.70)

The correct distribution mentioned above was applied to the boundaries and a uniform error
distribution was used as initid conditions. For this steady state case, CE/SE method is
exact, in the sense that no truncation error exists. This can be shown anayticaly as
follows: Using Egs. (3.69) and (3.70) in Eq. (3.10), we get

1i
HJHZEE j-v2 TXjao [1 ]?;'—: 1- (1)"'—[0 O]IV)

Using thisin Eq. (3.11), then yields
Similarly

and using Eq. (3.16)

(re)" =[2- 1- 1]/Dt=0

Therefore, if Egs. (3.69) and (3.70) are applied to the boundaries of a line segment of unit
length and an error distribution over the entire domain is used as initial condition, for a
suitable time step (i.e. one that leads to stability), the code should be able to proceed and

finaly produce the correct distribution everywhere in the field. This was observed in
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practice. This smple problem can be a great help in the study of time step effects on
stability and convergence rate. One can also use this case for selecting the optimum time
step for a particular spatia grid. For this purpose, different time-steps are used on a fixed
gpatia grid, and the evolution of the errors associated with each case is studied. Error is
defined as the infinity norm of the absolute value of the difference between numerical and
exact values of T, over the entire domain. Numerical experiments reveal the existence of
three time-step zones:
1) Largetime stepsleading to enlarging errors,
2) Medium time steps leading to non-vanishing but bounded errors for which the
upper error bound reduces with reducing time step,
3) Small enough time steps that lead to stable, time step independent results, with
errors vanishing to the order of machine zero.
Zone 3, in itself, is divided into two sub-zones:
a) Larger time-steps, for which the convergence rate decreases by enlarging the
time-step,
b) Smaller time-steps, for which the convergence rate increases by enlarging the
time-step.
The above two sub-zones are separated by the optimum time-step, which results in the
fastest convergence rate. Figures 3.9 and 3.10 provide an illustration for the one-

dimensional case's zone 3.
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Figure 3.9 shows the reduction of the errors to the order of machine zero. Figure 3.10,
provides an illustration of the optimum time-step for two different spatial grid increments.
Further conclusions drawn from this figure are:
0 The magnitude of the optimum time-step decreases by refining the spatia grid. This
was to be expected because of the stability criterion.
0 Therate of convergence decreases by refining the grid. This fact is common among
the numerical methods.
More details on the effects of spatia grid increments, time-dependent boundary conditions
and numerica investigation of the order of accuracy of the method are discussed in the

following chapters.

3.4.2 Single-Phase Stefan Problem

In order to assess the accuracy of the one-dimensional phase change scheme, a single-phase
Stefan problem is used as a benchmark, under the following conditions.

Consider adab of thicknessL = 1 with the initial state assumed to be liquid at the fuson
temperature T;. At t = 0, the temperature of the surface at x=0 dropsto Tw and is
maintained at that value. The surface a¢ x=L is effectively insulated. The anaytica
solution of this problem, containing the transient temperature distributions and the phase
front location, can be found in [69]°. This problem is studied numerically for a Stefan

numbers of 3. The case is modeled using a uniform spatia grid containing 1,100 nodes.

5 For more details about this benchmark problem see Chapter 4.
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Other parametersare T,, =-1.0°C, T, =0.0°C, while the thermal diffusivity and specific

heats are set equal to unity.

Figure 3.11 demonstrates the temperature distribution a t = 0.14 s for the above
problem. As can ke seen, excellent agreement is achieved in comparison to the exact
solution. The same observation can be made from Fig. 3.12. This plot represents the
corresponding enthapy curve. Here it is seen that the sharp jump in the enthalpy, at the

phase front, is perfectly resolved. Similar results are obtained for other Stefan numbers.

3.4.3 One-Dimensional Solidification of the Binary Al-4.5% Cu Alloy

The physical situation considered thus far has involved isothermal phase change. To solve
problems involving phase change over atemperature range, (see Section 2.5), the computer
program was then extended. The benchmark problem used here is smilar to the one
explained in the previous section, except that in this case a mushy zone exits. Properties of
the material, the relationship between the temperature and the liquid fraction in the mushy
zone, as well as a semi-analytical solution (using a heat balance approach), are adopted

from [86]. The problem involves solidification of the Binary Al4.5% Cu Alloy. The

function F (T) (see Equation (2.7)), for this material is given as

.- b
~ ®eT.-T 0
F(T):éF—: Ts ETET,, (3.71)
TF - TLf g
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where b =1.163, T, (=919 K, T5;= 821K, and T.= 933 K is the freezing point of the
solvent. Examination of Eq. (3.71) reveals a temperature range associated with a non-linear
F (T) accompanied by a step discontinity (an isothermal phase change) at the eutectic

temperature, T, [86]. Other properties of the materia are listed in Table 3.3. Initidly, the

material isassumed to beat T, ; . A Dirichlet boundary condition of T =573 K isimposed

ax=0,attimet = 0. The geometry is assumed to be a line segment of length 0.2 m. The
gpatia grid is uniform and contains 200 nodes. Figure 3.13 shows the results obtained
using the one-dimensional extended scheme, compared to the semi-analytical solution from
[86]. Figure 3.14 is a plot of the liquid fraction versus temperature for this problem. This
case confirms the space-time CE/SE method’'s potential as an effective aternative

numerical scheme for a general phase change problem.

Property | Value Property | Value

J J
Cs 900 Yok | 1100 Y.
Ks 200W/ | ke oW/

k 105 J
r 2800 % . | L 39710° )

Table 3.3: Propertiesof abinary Al-4.5% Cu alloy from [86]
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Figure 3.1: Computational molecule of the CE/SE method, (a)
CE (j, n) and (b) SE (j, n)
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Figure 3.2: Space-time conservation element containing the
phaseinterface
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Amplification factor

Figure 3.3: Theamplification factor for time step equal to 1.E-
3, for thelinear scheme without the second-order derivatives

S, = 0.08

1
l

Amplification factor
o

Figure 3.4: Theamplification factor for time step equal to 1.E-
4, for thelinear scheme without the second-order derivatives
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[urs

Amplification factor
=]

Figure 3.5: The amplification factor for time step equal to 1.E-
6, for thelinear scheme without the second-order derivatives

Sr ]
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Stefan number

|
[y

Amplification factor

Figure 3.6: Theamplification factor for time step equal to 1.E-
3, for thelinear scheme with the second-order derivatives
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Figure 3.7: The amplification factor for time step equal to 5.E-

Amplification factor

4, for thelinear scheme with the second-order derivatives
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Chapter 4

TWO-DIMENSIONAL CE/SE PHASE-CHANGE

SCHEME

Many aspects of the behavior of a numerica scheme can be studied using its one-
dimensiona version. However, because of the geometric smplicity of such cases, many
features may as well remain unreveadled. Further, features such as the one-dimensional
stability condition, athough useful as an initial guess, may not be readily extendable to
higher dimensions. Finally, in order to make the phase change solver as genera as possible,
development of atwo-dimensional version is essential.

In this chapter, the two-dimensiona CE/SE phase change scheme is derived. Its error
behavior, convergence properties, and order of accuracy are studied numerically. The
computer program developed from this methodology is then validated using several phase
change benchmark problems. It is founf to be accurate. Further, temperature profiles and
interface locations are resolved without non-physical oscillations. The behavior of the

scheme is also studied at the problematic limit of small Stefan numbers.
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4.1 Development of a Two-Dimensional Space-Time CE/SE

Scheme for Heat Conduction with Melting/ Freezing

The governing equation (Eq.(2.3)), for two spatia dimensions, is written as

TH_TeMo, 110

—_ = - =4+

T e Ko WE g

Equation (2.6) can be used without change. Define vector U as

U =(F,G,H)
where H is enthalpy per unit volume and
Featdl ook dT
fix iy

(4.1)

(4.2)

(4.3

are referred to as the flux functions. Considering (X, y,t) as the coordinates of a three-

dimensional Euclidean space-time, the computational grid that is used here can be

explained as follows. The spatial projection of the grid is a two-dimensional, unstructured

mesh which consists of Delaunay triangulation [91] on the xy-plane that, considering the

time axis as the third dimension, makes prisms perpendicular to the xy-plane. The

computational molecule of this grid is shown in Fig. 4.1(a), where nodes V1, V», and Vs are
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the vertices of atriangular cell | at time level n — 1/2, with C as its centroid, while points
C,, C,, and C; denote the centroids of three neighboring cells j1, j2, and |3, respectively.

The neighbors are named in away that any vertex Vi, k=1, 2, and 3, of cdll j faces the side
shared by cell j and its neighbor jk. Primed points represent the same spatial nodes one-half

time-step later. For each cdll, the integral form of the governing equation may be applied to
the octahedral element that is the union of three tetragonal prisms: C V, C; V3 VEC(VS C{,
C V3 Co Vi V(CVLCs, and C Vi C3 Vo VECV(CS. The octahedron will be called the

Conservation Element, (CE), of cll j. The integral conservation law will then be

QJ - Ads=0 (4.4)

S(CE)

where S(CE) denotes the boundary of the conservation element while n (: (nX Ny, N, )) and
ds, respectively, denote the unit outward normal vector and the area of a surface element on
S(CE). In order to perform the above surface integration, U may be replaced by a first
order Taylor series approximation about a suitably chosen node, (called a solution point),

where the discretized values of U and its derivatives are saved. In this method both U and
its firg-order derivatives are considered the independent variables which must be

determined. By “suitably chosen”, as will be shown shortly, it is intended that solution

points are selected such that the method is explicit. Let (x(,y¢) represent the spatial

coordinates of the solution point related to cell j. Therefore, components of U may be

approximated as



86

Y(x, y,t;j,n)= Y’

(45)
(v

j
y

+(YX)?(X- x¢)
Ji(y- yo)+ (v - v)

where Y[, (Y, ), (Yy)rj1 ,and (Y, ) are constant coefficients associated with the solution

point (xﬂ: y$t ”), and Y can be any of the components of U . Further, the derivatives of F

and G can be found from Eq. (4.3), i.e,

(R =-km), (R =-k{r, ). (R)=-k{T.) s
G)=-k(r). G,)=-k,) (@) =-k{r) |

where the coefficients (T,,)", (Txy)]n () (Tyx)j“ : (TW)J,n and (Tyt )J" will be calculated
later in the section related to the second-order derivatives.

In Eq. (4.5), the notation H (x, y,t; j,n) [87] means the value of H at the point (X, y, t) is
evaluated using the nodal values saved at the solution point (xgt y]¢,t“). The reason these
need to be defined can be understood by considering the fact that each point on any of the

surfaces indicated in Fig. 4.1(a) may be evaluated using different discrete values, e.g., the

valueof U at apoint on the CV,V,C( plane may be found using the expansion point of cell

j atimelevel naswel astimelevel n— 1/ 2. Also, the value of U a a point on the

CV,C)V, plane may be found using the expansion point of cell j at timelvel n—-1/2 as



87

well as that of the neighboring cell, j1, a the same time level. To assign a unique value to
each surface point while integrating, each surface needs to be related to one and only one (],
n) entity, which is called a solution element, (SE). Consequently, solution el ements must be
defined so that each component surface on the boundary of any conservation element
belongs to an assigned solution element. Figure 4.1(b) shows two of four solution elements
related to the cell j, i.e, SE (j, N which conssts of the hexagon C(V{CsV,(C{V(
combined with three vertical rectangular planes cutting through it, SE (j,,n- 1/2) that
congsts of the hexagon C VA B D b combined with three vertica rectangular planes
cutting through it, where A, B, and D are related to the neighbor j3 of cell j (not shown),
and two other SE's (j,,n- 1/2) and (j,,n- 3/2) that are built the same way. Using the
notation convention introduced in [65], consider the SE (j,,n- 1/2). The two lateral faces
related to this SE, i.e,, C,V, V,(C{ and C,V, VLC(, (see Fig. 4.1(a)), will be referred to as
1, 1) and §2, 1), respectively. Furthermore, the areas of 1, 1) and §2, 1) will be
referred to as S and S®Y, respectively, while A%, and A®? represent the unit normals

of the above lateral faces, outward with respect to the octahedron. Furthermore, spatial

coordinates of the centroid of each of these faces will be referred to as (xc(“), y, ) and

(x @ yc(z‘l) ) respectively. Also the surface C,V, CV,, that is the horizontal plane related

C

to this SE, will be caled 1), while its area and will be referred to as S® . The unit
outward normal to this surface is (0, 0, -1). In generd, for SE (j,,n-1/2), k=1, 2, 3, the
lateral faces will be caled S, k), while their area, unit outward normal, and the spatia

coordinates of their centroid will be referred to as S, A’ =N n!" 0), and
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(xc("k),yc("k)), | =1, 2, respectively. Also the corresponding horizontal plane will be
denoted by S(k), while its area, and the spatia coordinates of its centroid will be
represented by S®, and (xc(k),yc(k)), respectively. Note that the so-caled horizontal
planes form the bottom of the octahedron. The horizontal planes that contain the top of the
octahedron, however, belong to SE (j, n). The areaand spatial coordinates of the centroid of
the top surfaces are equal to those of the bottom surfaces but their unit outward normal is

(O, 0, +1). Using the above conventions and performing the inner products, Eg. (4.4) can be

written as

- ﬁds=é3{ OH (% y.t; j,n) (+D) ds +

S(CE) k=1 s(k)

OH (X y,t; j,n- Y2)(- Dds+

S(k) I

dF(x vt n- ¥2)nt™ +Glx v, - Y2)ni™ o

S(1 k)

(4.7)

Qon

1
fuy

where the first and second integrals are performed over the top and bottom surfaces,
respectively, and the third integral is related to the lateral faces of the octahedral CE. Using

Eq. (4.5), the third integral of Eq. (4.7) can be evaluated as follows
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[ (0 —

(\:[F(X’y’t; jon- Y2)nl +G(x, y.t; jy,N- ]/2)n§/|'k)]ds

S(,k)

= I +(F ) (x- xe )+ (R )2y - ve )+

S(1 k)

(F)7¥2- 2 )int® + (G172 + (G, )7 (x- x¢ )+

Jk

(Gy)?k'jf2 (y- y¢ )+ (G, )';k-llz (t i tn-:llz)]ny 9} ds

149 = ggs{[F - (F)] Vg -

S(,k)

(7, ve - (Rt +

[GJ.:']/Z _ (GX)jnk-]lz Xﬁtk _ (G )n ]/2y¢ (G )r:( 1/2 n- ]/2]n(| k)}

HLF)L 0 +(G); V)] oxds

+[(Fy)jr:j/2n§"k’ +(G ) 2] (yds

’ s(l,k)
LR (@) 00] s
S(1,k)

(4.8)

(4.9)

But (yls isthe area of the corresponding lateral face and the rest of the above integrals

S(1,k)

may be evaluated using the space-time coordinates of its centroid. Therefore, the integral

becomes

| () _{ ( (,k) yc| k),tn ) Dt/4; i, ]/Z)n)il,k)
+G(x, y09 " - Dt/4; j,,n- Y2)nlP} s

(4.10)
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Following a similar procedure, the first and second integrals of EqQ. (4.7) become

o (x,y,t; j,n)(+1) ds = S“‘)[H n

S(k)

+(H,) (- xg)+ (H,)r (v - ye)]

W(X’ Y.t jk,n' ]/2)(- ])ds:- sk [H TkJ/Z

S(k)
()T - xg )+ (4, )72 (v - v )]
=- SO H (x®,y® t"%; j, ,n- y2)

(4.12)

(4.12)

respectively. Equation (4.7), after substitution of the evaluated integrals, provides an

expression for H . The expression contains three unknowns H",(H, )", and (H y)]” , but

examination of the expressions which contain (H X)J” and (H y )j” suggests that they may be

eliminated, resulting in an explicit method, provided the solution point is chosen at the

centroid of the hexagon C1V3C,V1CsV, formed by the vertices of cell j and the centroids of

its three neighbors. Using this, the equation for H ' can be written in a convenient manner.

Note that despite the apparent complexity, the equation for H isin fact composed of three

smilar parts, each related to one of the neighboring cells.

R(k)/
1

H" = s

J

il QJ°<»
7 Qo

1

(4.13)
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where

2
RO =S H (x,y®, 1", j, n- 12)- § 119 (4.14)

=1

and | 9 is evaluated using Eq. (4.10).
The above formulation has the important attribute of being able to handle nonlinearities
that may exist in the definition of functions H, F and G.

Once the values of enthapy are updated over the entire domain, Eqg. (2.6) can be used to
obtain the temperature field, and the first and second order derivatives of the field

parameters may be calculated as presented in the following sections.

41.1. First-Order Derivatives

As described in detail in [87], the first-order derivatives of the field parameters can be

evaluated from
S 3 3 &
a l.a,[ Y® a g, y®
v.) = A )= (4.15)
[o] a [o]
al.a, ap.a,l
k=1 k=1
where

G =\/(Yx‘k))2+(Y§k’)2, k=123 (4.16)
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and, for any given integer, k = 1,2, 3, {K} E{m, p} ={1,2,3} . Parameters Y ¥ and Y “ are

caculated solving the following three systems, each containing two equations and two

unknowns. Parameter Y can beeither Hor T.

(X?E - X?:)Y)El) +(y§]l:< - yF)Yy(/l) :er: _ an’ k=23
(x¢ - X}T')YX(Z) "‘(yﬁ . yﬁt)Yf/Z) =Yi: ; an’ k=13 (4.17)

Ik

(x¢ - X?’)Yf’ +(y$ - ny)Yf) =Y-Y), k=12

The constant a’, in Eq.(4.15), is usually set equa to 1. The above weighted average
provides the necessary numerical damping [69]. Note that, to avoid dividing by zero, in

practice a small positive number (e.g. 10%) is added to the denominatorsin Eq. (4.15).

4.1.2. Second-Order Derivatives

As explained in [69], once the first order derivatives of the temperature field are known,

expanding (TX)J.”k'J/2 .k =1,2,3, which is saved at the solution point (S,,n- 1/2) about the

space-time solution point (S,n), resultsin three equations

n . Dt n
O - ()] + 8 - yofr,) - (1)) =

(Tx)'n_J/2 - (Tx)n k:l' 2’ 3

Jk j?

(4.18)
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These may be solved simultaneously for (T, )", (Txy)J” cand (T,,)". A similar system gives

T,.)", (T.)", and |T,)". Using this technique, the mesh vaues of second-order
(r)r. (r,)r e (1)

derivativesof T can be evaluated in order to be used in Eq. (4.6). The first-order derivatives

of flux functions, evaluated from Eq. (4.6), can then be used in Eq. (4.13).

4.1.3. Boundary Conditions

In order to treat the boundary conditions, a ghost cdll is defined for each boundary cell.

Geometrically, the ghost cell is a mirror image of the corresponding boundary cell with
respect to the boundary, as shown in Fig. 4.2 where SJ. and S, denote solution points
related to the boundary cell and the ghost cell, respectively, ad B is the intersection of the
line segment S, S; with the boundary. Let Y be a field parameter, which can be either
enthalpy or temperature.

1) Constant temperature boundary Y ; = Const.:

Using alinear interpolation
Y, =2Yg- Y, (4.19)

All the derivatives a “g” may then be set equal to their corresponding values at

]
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2) Aninsulated boundary or axis of symmetry:
Let s and t be the norma and tangentia directions to the boundary,
AT o

respectively. The insulation condition is then ¢=——+ =0 and considering
eﬂS %oundary

m:c i it dso leads to ﬁQ =0. The reader is referred to [87]

ﬂs ﬂS e ﬂS %oundary

for details of reflecting boundary conditions.®

4.2 Numerical results and discussion

To assess the accuracy and effectiveness of the two-dimensional CE/SE method applied to
conduction problems with phase change, several classical cases were solved and the results
were compared to the existing analytical solutions.

In order to begin the validation of the computer program, and specialy to study the error
behavior of the numerical scheme, the following two cases were designed and applied to a

unit square geometry, with k =1.

Case 1. H=TandT=x+y, (4.20)

Case?2. H=T and T =2t + (5% +y?)/ 2. (4.21)

6 Also see Chapter 6, where the insulated boundary conditions are derived, in detail, for a general three-dimensional
problem. Further, see Chapter 5 for boundary conditions of the third kind, i.e., convective boundary conditions.
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As can be seen, the above temperature distributions satisfy the governing equation, (Eg.
(4.1)). The following, contains the details of the above cases, along with severa other

phase change validation cases.

4.2.1 The Steady Linear Case

This case is a steady linear problem, for which it can be easly shown that the CE/SE
formulation is exact, in the sense that no truncation error exists. Therefore, the spatia grid
is not an issue in this case. On the other hand, the time-step issue needs to be studied.
Equation (4.20) was applied on the boundaries, with an initially imposed error distribution
over the entire domain. The results confirmed that, after a period of time, the temperature
converges to the accurate distribution everywhere in the field.

The error behavior was studied, for the steady case above, for different time-steps. Since
the present method is explicit, there are stability restrictions on the time-step. Numerical
experiments reveal the existence of three time-step zones:

1) Largetime steps leading to enlarging errors.

2) Medium time steps leading to non-vanishing but bounded errors for which the
upper error bound reduces with reducing time step. This zone can be seen in
Fig. 4.3, where absolute error (norm of infinity of the difference between the
numerical and exact solutions) is depicted versus the iterations.

3) Smadl time steps that lead to stable, time step independent results, with errors

vanishing to the order of machine zero. This zone is shown in Fig. 4.4. As can
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be seen, the fastest convergence rate is achieved by using the largest time-step
that falls within this category.

Figure 4.4 also shows that once the lower bound is achieved, the errors do not grow with
further iteration. Additional numerical experiments confirmed the following facts. a) The
same pattern was detected for other problems, b) once the time-step is selected for a spatial
mesh, it can be used for other phase-change problems on the same mesh.

It is worthwhile to note that in both zone 2 and zone 3, a stable converged solution is
achievable, while only one of them gives the correct solution. This problem can be easily
resolved noting that by dightly changing the time-step in zone 2, results change
dramatically, a phenomenon that does not occur in zone 3. Based on the above results, the
procedure of choosing the optimum time-step for a spatia grid, may be summarized as
garting from a large time-step, (a good initial guess could be obtained from the one-
dimensional, necessary, stability condition derived in the previous chapter), and reducing it
until stable, time-step independent results are achieved.

Comparison of the above zone 3 with the zone 3 of the one-dimensional version, (see
section 3.4.1), confirms the fact that the two-dimensiona stability criterion is more
restrictive. Zone 3(a) of the one-dimensiona case does not exist for its two-dimensional

counterpart.

4.2.2 A Problem with Time-Dependent Boundary Conditions

For this transient problem, unlike the previous case, there is a truncation error associated

with the second-order accuracy of the CE/SE method. Clearly, this error should decrease by
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using finer spatial grids. Equation (4.21) was applied on the boundaries. Both the exact
solution and a uniform error distribution were used as initial conditions. Several spatial
grids were used for this case. A grid that has 50 nodes on each side of the unit square will
be referred to as the coarse grid, while the so-called fine grid consists of 100 nodes on each
side of the unit square. The absolute errors (error is defined as the infinity norm of the
absolute value of the difference between the numerical and exact solutions over the entire
domain) are shown in Fig. 4.5. This figure confirms that refining the grid reduces the size
of the truncation error. The rate of this decrease is related to the actual order of accuracy of
the numerical scheme. Therefore, using a number of different spatial grid increments, we
can numericaly demondtrate that the method is second-order. In Fig. 4.6, the average
absolute errors are plotted versus the spatial grid spacing. Examining the slope of this log

log plot, the second-order accuracy of the method is confirmed.

4.2.3 Freezing of a Finite Slab (a One-Phase Stefan Problem)

Consider a dab of thickness L with the initial state assumed to be liquid at the fusion

temperature T, (Fig. 4.7). At t =0, the temperature of the surface at x=0 dropsto T,

and is held there. The surface at x = L is effectively insulated. The analytical solution of

this problem, from [92] determines the phase change interface is located at

Xint. = Zg \/ast (422)
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where a  isthethermd diffusivity of the solid phase and g is obtained by solving

2 Cs(rf 'TW)
ged ef(g)=————
Livp

(4.23)
where c, denotes the specific heat of the solid phase and L, is the latent heat of fusion.
Also the temperature in the solid region is determined from

Tf B Tw

=T g ) (4.24)

X
2ast'

where h =

In order to model this one-dimensional problem using the two-dimensiona code, the top
and bottom of the dab are assumed to be insulated since any horizontad line can be
regarded as aline of symmetry in this problem.

The above problem is studied for a range of Stefan numbers. Other parameters are
T, =-1.0°C, T, =0.0°C, while the thermal diffusivity and specific heats are set equal to
unity. Figure 4.8 shows the position of phase-change interface compared to the analytical

solution for § =0.05,0.1, 4.0, and 10.0, where § = (:S(Tf - TW)/ L; isthe Stefan number.

Temperature distributions at t = 0.14 s are also compared to the analytica solution in Fig.
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4.9. As can be seen, accurate results are obtained for a range of large and small Stefan
numbers.
For small Stefan numbers, the accuracy was improved by using a dightly different

method for calculation of first-order derivatives. The CE/SE method, in its present form,

loses its second-order accuracy and becomes dissipative for § <1. The dissipation,

however, is adjustable by the changing the parameter a’, as mentioned in Section 4.1.1.

Accurate results for S, =0.05, and 0.1 are obtained using & <1. It is possible, however, to

design a CE/SE scheme in a way that the above adjustment occurs automatically and the
method becomes insengitive to the size of Stefan number. Chapter 7 is a detailed study of

this subject.

4.2.4 Heat Conduction with Freezing in a Corner

The problem under consideration here is the phase change of a liquid contained in an
infinite corner (Fig. 4.10). The liquid has a uniform temperature T, 3 T, and for time
t3 0, thesurfaces x =0 and y = 0 are maintained at a constant temperature T, <T, .

The analytical solution of this problem, which is of similarity nature, is discussed in
detail in [93]. Briefly, the non-dimensiona interface position, f (x ), can be determined

from

(4.25)
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where X' = L, a isthetherma diffusivity which is assumed to be equa for both solid

Jaat

and liquid phases, | (asymptote shown in Fig. 4.10) is calculated by solving the following

equation
- 2 * - 2
ef(l) erfo(l )
where T, = k& T 9 the non-dimensional initial temperature and b = ol
| ks Tf - TW B’ m,

the latent to sensible heat ratio are two non-dimensional parameters needed for completely

defining this problem. Constants C and m in Eq. (4.25) are determined for each case using

T and b [93]. The numerical simulation is performed using insulated walls at x = 3.0 and

y =3.0. Results are shown for b =0.25 and T, =0.3 (which imply that C = 0.159 and m

=5.02[94]). Constant temperature contours, at t = 0.02 seconds, are shown in Fig. 4.11 and
the nonrdimensiona interface position is conmpared to the analytical resultsin Fig. 4.12. An
example of the unstructured mesh used for al of the square domain cases is shown in Fig.

4.13.
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4.2.5 Inward Freezingin a Circular Pipe

The inward phase change of a liquid within a cylindrical boundary is important in dealing
with freezing of water in pipes and alied problems. A number of approximate solutions are
available for this finite domain problem [92]. As a result of symmetry, only a quarter of a
circle need be studied; the geometry is given in Fig. 4.14 and an example of the spatia
mesh is shown in Fig. 4.15. The numerical results are obtained for a quarter circle of unit

radius with the initial state assumed to be liquid at the fusion temperature. Other parameters
ae T, =-10C, T,=00C,and L,=0.25J/kg while the thermal diffusivity and
specific heats are set equal to unity. The position of the phase change interface at different
times is shown in Fig. 4.16, these graphs are generated using enthalpy contours that range
from Hy to H . The enthapy distribution in the circle is given in Fig. 4.17 for an
intermediate time of t = 0.11 s. The tota freezing time (tr) is determined to be between0.18

s and 0.19 s, which is in agreement with the approximate solution given in [92]. This

approximate solution may be expressed as

at, 1

1
il B P B 4.27
R4S 8 (4-27)

where Ris the radius of the circle, a denotes the diffusivity. This approximate relation, for

this case, gives atota freezingtimeof t, =0.1875s.
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Chapter 5

AXISYMMETRIC CE/SE PHASE-CHANGE

SCHEME

Many three-dimensional problems can be modeled as axisymmetric. Therefore,
having an axisymmetric version of the solver can save a great amount of time and
computational power while treating those problems.

In this chapter the development of an axisymmetric CE/SE phase change solver
is undertaken. It explores axisymmetric formulation options and determines which
option leads to a stable efficient solver. In addition to the derivation, severd
numerical validations are also presented to demonstrate convergence and accuracy
of the axisymmetric scheme. The boundary conditions are also extended to include

the convective boundary condition and its numerical implementation.

5.1 Development of an Axisymmetric CE/SE Scheme for

Heat Conduction with M elting/Freezing

The axisymmetric version of the governing equation (Eq.(2.3)), can be written as

111
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) )
™ :kaal T+1ﬂT+ﬂ2Tg
1t g‘ﬂr2 rir 12° 5

(6.1

Equation (2.6) can be used without change.
Consider the following PDE which can represent a variety of conservation laws

depending upon the definition of H and the flux functions F and G

T, IF , 16
Tt T

=0 (5.2)

where x; and x; are coordinates of atwo-dimensional Cartesian system. As a specia
case note that the two-dimensional Cartesian version of Eq. (2.3), in the xy-plane,

can be written in the above form defining for example

F:-kﬂ, G:-kﬂ (5.3)
X Ty

The CE/SE method applied to the above case was studied in the previous chapter,
and its accuracy and efficiency were assessed.

The axisymmetric governing equation, (Eg. (5.1)), can also be written in the
form of Eqg. (5.2) by letting x;1 = r and x; = zrepresent the radia and axial

coordinates, respectively, and writing Eg. (5.1) in its conservation form
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TrH), T
It qr

gekr‘l%—; ﬂlgekr‘l%—gz (5.9
The CE/SE formulation, presented in the previous chapter, would be therefore
directly applicable. However, after writing the code it was observed that the above
formulation does not lead to a stable numerical method for axisymmetric cases. An
explanation for this phenomenon follows.

Although Eq.(5.2) can be used as a general form for describing many physica
phenomena, the properties of the resulting numerical schemes may be very different
depending on each individual PDE. Further, even for different formulations of a
single PDE, the resulting numerical schemes may vary in performance,
dissipative/dispersive behavior, and stability range, deperding on the specific forms
of the functions H, F, and G for each individual formulation. Some formulations,

such as Eqg. (5.4), may render unconditionally unstable schemes. Therefore, in

search of a gstable, (or marginaly stable), axisymmetric scheme, an dternative

approach is used in which the leT term in EQ. (5.1) is treated as a source term,
rqr

i.e,
— (5.5

Or, in agenera form similar to that in Eq. (5.2)
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ﬂH+ﬂF+ﬂG
1t qr 9z

I
m

(5.6)

~ T .
where S :E_jT represents the source term, and the flux functions F and G are
rqr

defined as F:-kﬂ andG:-kﬂ.
Ir 1z

Considering (r, z,t) as coordinates of athree-dimensiona Euclidean space-time,

Eq. (5.6) can be written as
N-U=S, U=(F,G,H) (5.7)

A two-dimensional, unstructured, space-time mesh is used here which conssts of
Deaunay triangulation on the rz-plane that, considering the time axis as the third
dimension, makes prisms perpendicular to the rz-plane. Axisymmetric CE's and
SE’s are defined in an andogous manner to the two-dimensiona case. The integral

conservation law will then be

¢y Ads= (Sdv (5.8)

S(CE) V(CE)

where §CE) denotes the boundary of the conservation element while

A (=(n,,n,,n)) ad ds, respectively, denote the unit outward normal vector and the
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area of a surface dement on §SCE). In order to perform the above surface
integrations related to the left hand side of the above equation can be calculated as

in the two-dimensional case, as explained in the previous chapter. For calculating

the right hand side of Eq. (5.8), S is approximated as follows

(5.9)

By replacing (x, y) in Fig. 4.1 with (r, 2), its axisymmetric counterpart results, in

which, V (CE) can be written as

3
V(CE)=3q Vv® (5.10)
k=1
where
v ® = s®(Dt/2) (5.11)

Therefore, the right hand side integral of Eqg. (5.8), can be calculated as follows
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Fdv=8 5+ +(S ) - re)
V(CE) k=1 \®
+(§ ).nk'llzz z¢ +( ) t t“lz)} dv
Dt & <oy any2 O 612
=S asv(§ +(S)7 (0 - rg)
(S0 - )+ S8

Quantities 51.:'1/2, (§,)j:]/2 (52);:1/2, and (i)j:'yz are saved at the solution point of

cdl j, , and are considered constant on the corresponding solution element. Using a

definition analogous to that of Eq. (5.9), the above volume integral can aso be

written as

3
Fav =208 sWE(M, 29,60 - py/asjn- ¥2) (519

V(CE) k=1

Equation (5.8), after substitution of the evaluated integrals, provides an expression
for H . The expression contains three unknowns H/,(H,)", and (H,)", but
examination of the expressionswhich contain (H, )" and (H,)" suggests that they

may be eliminated, resulting in an explicit method, provided the solution point is

chosen at the centroid of the hexagon C,V, C,V, C,V, formed by the vertices of

cell j and the centroids of its three neighbors. Following this approach, the equation
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for H? can be written in a convenient manner. Note that despite the apparent

complexity, the equation for H T Is in fact composed of three similar parts, each

related to one of the neighboring cells.
" _ 8 /8 ak
Hi=a R”/as
k=1 k=1

where
15c 1 1

~ 2
%s(rg“,zgk’,t“ - Dt/4; j,.n-Y2) }- § 109

1=1

and | "% iscaculated from

100 ={F (£, 209 t" - Dt/4; j,,n- Y2)n!™¥
+G(r%, 209 t" - Dt/4;j,,n- Y2)ntH}siw

(5.14)

(5.15)

(5.16)

Determination of the first and second-order derivatives is performed just as in those

of the two-dimensional Cartesian case.
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5.1.1. Convective Boundary Conditions

In addition to the boundary conditions explained in Chapter 4, here the boundary
condition of the third kind, i.e., convection boundary condition, is aso used:

Assuming a film coefficient, h, a an ambient temperature of T, , this boundary

condition can be written as

h(Tg - T,)=-k (1T/7s ), (5.17)

where s is the outward rormal direction to the boundary. Central differences can

then be easily used to extract an expression for T, using T, from the Eq. (5.17).

5.2 Numerical Results and Discussion

To assess the validity and accuracy of the axisymmetric CE/SE formulation, the
following problems were designed and applied to a unit cylindrical geometry, using

afictitious material with unit conductivity.

Casel. H=TadT-=z (5.18)

Case2. H=TadT=3t+r?/2+2%/2 (5.19)
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As can be seen, the above temperature distributions satisfy the axisymmetric
governing equation (Eg. (5.1)). The following, contains the details of the above

cases, along with several other axisymmetric phase change cases.

5.2.1. Case 1l Time-Step Effects

This case is a steady linear problem, for which it can be easily shown that the
CE/SE formulation is exact, in the sense that no truncation error exists. Therefore,
the spatia grid is not an issue in this case. On the other hand, the time-step issue
needs to be studied. Equation (5.18) was applied on the boundaries, with aninitialy
imposed error distribution over the entire domain. The results obtained confirmed
that, after a period of time, the temperature converges to the accurate distribution
everywhere in the field. Figure 5.1 shows the absolute error (which is defined as
the infinity norm of the difference between the numerical and exact solutions)
versus the iterations for different time steps. The errors are seen to vanish to the
order of machine zero.

Using this case, the error behavior was studied, for different ime-steps. Since
the present method is explicit, there are stability restrictions on the time-step. The
error behavior for the axisymmetric case was observed to be smilar to that obtained

for the two-dimensional analysis, which was discussed in detail in Chapter 4.
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52.2. Case 2: Spatial Grid Size Effects

For this transient problem (see Eg. (5.19)), unlike the previous case, there is a
truncation error associated with second-order accuracy of the CE/SE method.
Clearly, this error should decrease by using finer spatial grids. Figure 5.2 was
generated using two spatial grids. A grid that has 1,700 cells will be referred to as
the coarse grid, while the so-called fine grid consists of 3,964 cells. Equation (5.19)
was then applied on the boundaries. Both the exact solution and a uniform error
distribution were used as initial conditions. The absolute average errors (defined as
the arithmetic average of the absolute vaue of the difference between the numerical
and exact solutions, over the entire domain) are shown n Fig. 5.2. This figure
confirms that refining the grid reduces the size of the truncation error. As
mentioned in the previous chapter, the rate of this decrease is related to the actual
order of accuracy of the numerical scheme. Therefore, using a number of different
gpatial grid increments, we can numerically demonstrate that the method is second-
order. In Fig. 5.3, the average absolute errors are plotted versus the spatiad grid
gpacing. Examining the slope of this loglog plot, the second-order accuracy is also

confirmed for the axisymmetric scheme.

5.2.3. Casesof the Thawing Cone

Thawing of a cone, with a cone half angle of 30 degrees, was studied using the

axisymmetric scheme. All cases start from a frozen initial state at the fusion
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temperature with different boundary conditions. An example mesh for al conical
casesisgivenin Fig. 5.4. For these cases, the position of the phase change interface
a different times is shown in Figs. 5.5, 5.6, and 5.7. Figures 55 and 5.7 are

generated using constant enthalpy contours that range from enthalpy of the fusion

solid, Hg , to that of the fusion liquid, H |, . For al of the cases studied, Lf=0.25J

/ kg, T; = 0.0°C and the thermal diffusivity and specific heats are set equal to

unity.

The cases are;

1) Insulated sides, constant temperature on the base. The results are shown on the

right half of Fig. 5.5for T, =0.3°C..

2) Insulated sides, boundary condition of the third kind on the base. The results are

shown on the left haf of Fig. 55 for T, =0.3C, and a film coefficient
h =10 V%nz Lk On the base. As can be seen, the convection resistance creates a

delay in thawing, depending on the magnitude of the film coefficient. As the film
coefficient is enlarged, the expectation is for the so-caled delay to vanish. The
results should then converge to the constant temperature results. This experiment
was conducted numerically and the expected results were obtained. Figure 5.6
shows this process by comparing the position of phase change interface, on the

axis of symmetry, versus time for different film coefficients.



122

3) Constant temperature boundary condition, with T =0.3°C, on al outer
surfaces of the cone. The phase change interface at different timesis given in Fig.

5.7.

The results discussed in this chapter offer, in addition to an axisymmetric CE/SE
phase change solver, a confirmation of the robustness of the numerical approach

adopted.
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Chapter 6

THREE-DIMENSIONAL CE/SE PHASE-CHANGE

SCHEME

This chapter concerns the development of athree-dimensional CE/SE phase change solver.
It contains a detailed derivation of the four-dimensiona space-time scheme needed for
solving phase change problems in three spatia dimensions. As presented in the previous
chapters, the convergence and accuracy of the three-dimensional scheme is also assessed
numericaly, by comparing the results to the available anayticad and semi-anaytical

solutions for specific benchmark problems.

6.1 Development of a Three-Dimensional CE/SE Schemefor

Heat Conduction with M elting/Freezing

In three spatial dimensions, Eq. (2.3) becomes

- = tk—=+ L

T IXE o W g & Tzo

127
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Equation (2.6) can be used without change. Define vector U as

U =(F,G,P,H)
where
SR LS LS 1
fix Ty fiz

and H is the enthalpy per unit volume.

(6.2)

(6.3)

Considering (X, v, z, t) as coordinates of a four-dimensiona Euclidean space-time, Eq.

(4.4) will still be valid. The spatial projection of the unstructured grid used here consists of

tetrahedral elements. To provide a clear geometric description of the CE, an analogy with

the two-dimensional formulation is helpful. As described in previous sections, the

integrations involved in the two-dimensional case are performed on the CE’s top, bottom

and lateral faces that are two-dimensional surfaces. Similarly, the integrations for the three-

dimensional case are performed on the CE’s top, bottom and lateral ‘faces that are three-

dimensional volumes.

6.1.1. Top/Bottom Faces

These faces are constant-time faces. Consider a tetrahedral element ‘cell |’ at time level

n-1/2, € g., the tetrahedron V1V,V3V, depicted in Fig. 6.1. Let nodes Vi, Vz, V3, and V4

represent vertices of cell j while its four neighboring cells are referred to as cells j1, j2, j3,
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and j4. The neighbors are named in a way that any vertex Vi, k =1, 2, 3, and 4, of cell |
faces the side shared by cell j and its neighbor k. Further, let point C denote the centroid of
cel j while Cy represents the centroid of the neighboring cell jk. The three-dimensional
anaogue of the hexagon V1C,V3Ci1VoCs of Fig. 4.1(a) can be visudized as follows. For
each face of tetrahedra cell j, a hexahedron can be constructed using vertices of that face,
the centroid of cell j, and the centroid of the corresponding neighbor. These hexahedra, i.e.,
CVoV3V4Cq, CVIVBVAC,, CVIVLV,GCs, and CV1VLV3Cy, are three-dimensiona anal ogues of
the two-dimensional bottom faces CV,V3Cy, CV3V1C,, and CV;V,Cs depicted in Fig. 4.1(a).
The hexahedron related to neighbor j1, i.e., CVoV3 V4 Cy, is depicted in Fig. 6.1. The union
of these 4 hexahedra is a polyhedron with 12 triangular faces. The centroid of this

polyhedron is the solution point of cell j, and its spatial coordinates will be referred to as x,
y¢, and z¢. This polyhedron is the three-dimensional analogue of the bottom face of the

hexagonal prism depicted in Fig. 4.1(a). A similar polyhedron represents the top face of the
three-dimensional case's CE.

Adopting a notation convention similar to that introduced in [65], the volume of each of
the four hexahedra introduced above will bereferredtoas V™, k=1, 2, 3, and 4 whereV
® is volume of the hexahedron related to neighbor ji. Further, let coordinates of the
centroid of the hexahedra be represented by x ®, y®, and z® wherek = 1, 2, 3, and 4.
The unit outward normals for top and bottom faces are (0, O, 0, 1) and (O, O, O, -1),

respectively.
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6.1.2. Lateral Faces

These faces simply connect the top and bottom faces in the 4" dimension. Therefore, there
are 3 lateral ‘faces (which are in fact three-dimensional volumes) associated with each
neighbor. To visuaize these faces, note that 3 lateral faces associated with neighbor j; are
volumes C1V2Vacavevy, CaVaVacovevy, and C1VaVacgvgve where the primed nodes refer
to the same spatial position as the corresponding unprimed nodes, but at the new time level,
n. The volume of these |ateral faces will be referredtoas v % wherel =1, 2, 3, andk = 1,
2, 3, 4 refers to the associated neighbor. The centroid of each latera face is represented by
the space-time point (x ",y "¥,z " t"- Dt/4). The unit outward normal of each latera
face is represented by A% = (A,"¥,A,"",4,"¥,0). These unit normals are defined outward
with respect to the hexahedra introduced in the previous section.

Andogous to the two-dimensiona case, each lateral face represented by v (1,k), as well
as each bottom face represented by V(k), is associated with SE (j,,n- 1/2), k =1, 2, 3, 4.
Thetop face is associated with SE (j, n). Using the three-dimensional analogue of Eq. (4.5),

ie,

(6.4)
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where v, (v, )7, (v, ). (v,); and (v,); are constant coefficients associated with the

solution point (xJ¢, y¢, z8t ) and Y can be any of the components of U . With integrations

similar to the two-dimensional case, the three-dimensiona analogue of Eq. (4.13) becomes

H = 54_ R(k)/g_v(“ (6.5)

k=1 k=1

where

RY =V M H (x, v, 29,42 j,,n- 3/2)-

3
& {F (9, y0, 29 17 - Diy4;jy - Y2l + (6.6)

=1

G0, yt 9,20, t" - DYf4; jn- Y2l +
P(Xél,k), yil,k),zél,k),tn - DY/4; j,,n- ]/Z)n(zl,k)}v(l,k)

6.1.3. First-Order Derivatives

Using an approach similar to the two-dimensional case, the process of determining the
first—order derivatives of the field parameters can be summarized in solving the following 4

linear systems, each having 3 equations and 3 unknowns.

(0§ - XOY 2 +(y8 - Y)Y P + 67)
(z¢ - YO =Y"-Y", k=234

(x¢ - XYY +(ye - yOY P+
(#-HYP=Y"-Y k=134

(6.8)
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(x¢ - xOY 2+ (v - yOY P +
(¢ - YL =YY" k=124

(6.9)

(x¢ - XYY +(ye - yOY D+
(#-HYP=Y"-Y" k=123

(6.10)

The above systems can be solved for v ®, y®and v®, where k = 1, 2, 3, and 4. A

weighted average may then be used to calculate (v )", (v,)" and (v,)r asfollows

J

3 a
a -ag|” (v.)o
k=1

- (6.11)
w/j °3 =
al.ag,
k=1
where
A= [y 0) + (v 9) 4 (v ), k=1234 (6.12)

and, for any given integer, k=1, 2, 3, 4, {K} E{m,q, r} ={1, 2,3, 4} . The subscript w in Eq.
(6.11) can be x, vy, or z while parameter Y represents either H or T. The constant & is

usualy set equa to 1. Note that, to avoid dividing by zero, in practice a small positive

number such as 102 is added to the above denominators.
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6.1.4. Second-Order Derivatives

Using an approach similar to the two-dimensional case, the process of determining the
second-order derivatives can be summarized in solving the following 3 linear systems, each

having 4 equations and 4 unknowns.

(¢ - x)(T,. )" +(v¢ - vo (T, )"+ (2t - 29(T,.)"

Dt n o N
B 7(th)j = (Tw)jk ]/2 - (Tw)j l k :1, 2,3,4

(6.13)

These may be solved smultaneoudy for second-order derivatives of temperature, i.e.,

(t.) (%) (r..)" and (1, )" where subscript w can be x, y, or z Using this technique, the
J J ] J

mesh values of second-order derivatives of T can be evauated and used in the solution

procedure which is similar to that of the two-dimensional case.

6.1.5. Boundary Conditions

In order to treat the boundary conditions, a ghost cell is defined for each boundary cell.
Geometrically, the ghost cell is the mirror image of the corresponding boundary cell with
respect to the boundary. The three-dimensiona case's reflecting boundary conditions are
derived using atechnique similar to that described in [87] for the two-dimensiona case. As
explained in section 4.1.3 and, in more detail in [87], reflecting boundary conditions can be
easly defined in a boundary fitted coordinate system. However, a transformation (of a
rotation nature) is then needed in order to describe the boundary conditions back in the

origina coordinate system of the problem. Appendix A is devoted to derivation of this
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transformation matrix for an arbitrarily oriented insulated boundary, for a genera three-
dimensional problem.
Other, phase-change related details of both constant temperature and convective

boundary conditions are as described in the previous chapters.

6.2 Numerical Resultsand Discussion

In order to vaidate the computer program for three-dimensional cases, and study the error
behavior of the numerical scheme, the following two cases were designed and applied to a

unit cube, for afictitious materia with unit conductivity.

Casel. H=T and T =x+ y+z+const. (6.14)

Case?2. H=T ar\dT:x2+y2+zz+6t (615)

As can be seen, the above temperature distributions satisfy the governing equation,
Eq.(6.1). The following sections contain the details of the above cases, along with severa
other phase change problems.

Before starting the case studies, it is of value to mention the grid generation method that
was applied. The unstructured grids used here, are generated employing the following three

grid generators.
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1) A regular tetrahedra grid generator, which uses cubic building blocks (each divided
into a number of tetrahedra) and assembles them to construct the domain of interest,
(see Appendix B for geometric details of these blocks),

2) An advancing front tetrahedral Delaunay grid generator [95],

3) A commercia grid generation code (GAMBIT).

6.2.1. Casel: A Steady Linear Problem

This case is a steady first-order problem, for which it can be easily shown that the CE/SE
formulation is exact, in the sense that no truncation error exists. Therefore, the spatia grid
is not an issue in this case. On the other hand, the time-step issue needs to be studied.
Equation (6.14) was applied on the boundaries, with an initialy imposed error distribution
over the entire domain. The results confirmed that, after a period of time, the temperature
converges to the accurate distribution everywhere in the field. Figure 6.2 shows the
absolute error (which is defined as the infinity norm of the difference between the
numerical and exact solutions) versus the iterations for different time steps. As may be
observed the errors vanish to the order of machine zero.

Using this case, the error behavior was studied, for different time-steps. Since the
present method is explicit, there are stability restrictions on the time-step. The error
behavior for the three-dimensional case was observed to be similar to that obtained for the

two-dimensional analysis, discussed in detail in Chapter 4.
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6.2.2. Case2: A Problem with Time-Dependent Boundary Conditions

For this transient problem (see Eq. (6.15)), unlike the previous case, there § a mesh
dependent error associated with second-order accuracy of the CE/SE method. Clearly, this
error should decrease by using finer spatial grids. Different spatial grids were used for this
case. A grid that has 9 nodes on each edge of the unit cube will be referred to as the coarse
grid, while the so-called medium grid consists of 21 nodes on each edge of the unit cube.
The grid referred to as fine grid contains 31 nodes on each edge of the unit cube. Equation
(6.15) was applied on the boundaries. Both exact solution and a uniform error distribution
were used as initia conditions. The absolute average errors (defined as the arithmetic
average of the absolute value of the difference between the numerical and exact solutions,
over the entire domain) are shown in Fig. 6.3.

In Fig. 6.4, the absolute average errors are plotted versus the spatial mesh spacing for
different grids. This figure presents a visual demonstration of the second-order accuracy of

the three-dimensional scheme.

6.2.3. Case 3: Freezing of a Finite Sab

Consider the freezing slab problem discussed in Chapter 4. In order to model this one-
dimensional problem using the three-dimensional code, al sides of the unit cube are
assumed to be insulated, except one side, (planey = 0), which acts like the x = 0 wall of the

problem stated in Chapter 4.
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This problem is studied for § =4 where § =¢(T, - T,,)/L, is the Stefan number.

Other parametersare T,, =-1.0'C, T, =0.0'C, while the thermal diffusivity and specific

heats are set equal to unity. An example of the spatial mesh for the unit cube is given in
Fig. 6.5. Figure 6.6 shows the position of the phase-change interface compared to the
analytical solution versus time. The temperature distribution in the y direction at timet =
0.14 sare compared to the analytical solution in Fig. 6.7. No changes occur in either x or z
directions. As can be seen, accurate results are obtained.

This case is aso solved using another commonly used fixed domain scheme from [86].
This method (usualy caled the source based method), is constructed based on an
alternation of the enthalpy formulation. The basis of the method can be described in smple
terms as follows. Assume, (for a constant density), that the enthalpy per unit volume, H, is

a function of both temperature and the liquid fraction, i.e, H° H(T,f) ingtead of

temperature only [96]. The chain rule can then be used to get

fH_THIT TH It
1t 9T It 9f it

(6.16)

H . :
where 11111—1_ © ¢ can be regarded as the specific heat of the materia, and 1111—?0 L, as
r r

the latent heat of phase transformation. Then by substituting Eqg. (6.16) into Eq. (6.1), a

new formulation results as follows
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This formulation is called source based because the term involving the time derivative
of the liquid fraction, is usualy treated as a source term. Although the above formulation is
written conveniently in terms of the temperature, there is a drawback associated with it: the
liquid fraction is also unknown along with the temperature. Therefore iterative corrections
are needed in order to resolve both temperature and the liquid fraction fields. The above
formulation is numericaly treated in [86], using an implicit finite difference scheme with
iterations in each step for correcting the liquid fraction filed. This method is applied to the
same freezing dab problem in order to compare the error distributions.

The error percentages within the domain are depicted in Fig. 6.8, for both the CE/SE
method and the method of [86], using an identical time step and identical spatia grid
gpacing. As can be seen, the error associated with the CE/SE method is more uniform over
the domain, compared with the method of [86]. The mean values and standard deviations

associated with Fig. 6.8, are givenin Table 6.1.

CE/SE | Method of [86]

Mean Error (%) 0.000836 | 0.001275

Standard Deviation | 0.000521 | 0.001227

Table 6.1: Statistical parameter s associated with Fig. 6.8



139

6.2.4. Case 4. Thawing of a Cube

Consider a unit cube that is initialy frozen a the fusion temperature T,. Attimet = 0, the

temperature of all outer surfacesisraised to Ty and held there. This case is studied for § =
4, T,=10C,and T, =0.0°C, while the thermal diffusivity and specific heats are set equal
to unity. Figure 6.9(a) shows the frozen core of the cube at different times. These graphs
are generated using a shaded view of the frozen cells in the mesh. Figure 6.9(b) shows the
xy-view of the phase-change interface location at different times. The plots are generated
using constant enthalpy contours ranging from Hg to Hir. The top graph also contains the
xy-view of the spatial mesh, from which the interface width is observed to be roughly equal
to the size of one cell. This demonstrates the ability of the CE/SE method for capturing the

discontinuities sharply.

6.2.5. Case5: Thawing of an dlipsoid

Consider a prolate ellipsoid that is initially frozen at the fusion temperature T, . At time
t = 0, the temperature of its outer surfaceis raised to Ty and held there. This case is studied
fooS=1,T, =10C,and T, =0.0°C, while the thermal diffusivity and specific heats

are set equa to unity. The geometry has a haf mgjor axis equa to 0.4 m and a half minor
axis of 0.25 m. The frozen core is shown in Fig. 6.10(a) at different times. The top graph

shows both the spatial mesh and the initia frozen ellipsoid.



140

By reducing the eccentricity of the original elipse, the above case approaches the case
of athawing sphere, for which, approximations for the total melting time are available in

[27]. It isworthwhile, therefore, to also study this limiting case of a thawing sphere.

6.2.6. Case 6. Thawing of asphere

Consder a sphere that is initidly frozen at the fuson temperature T, . Attime t=0, the

temperature of its outer surface israised to Ty and held there. This caseis studied for § =

1, 2, 3, and 4. The thermal diffusivity and specific heats are set equa to unity while
Ty =1.0°C,and T, =0.0°C. The radius of the sphere is taken to be 0.25 m. The frozen

coreisrepresented in Fig. 6.10(b) at different times, for acase where S =4. Thetop graph
shows both the spatial mesh and the initial frozen sphere. The total melting times, as shown
in Fig. 6.11, agree with the results from [27]. However, for the freezing dab case, the error
associated with the approximate relations given in [27], is reported to be 5%, while the
comparison of CE/SE results with the exact solution of that case shows a maximum error of
about 1%. A similar relation between the errors can then be expected for the case of the

thawing sphere.

In conclusion, this chapter offered the derivation and performance study of a three-
dimensiona CE/SE phase change solver. Specifically in comparison to another second

order fixed-domain method, (see section 6.2.3 and Fig. 6.8), on the same grid, the CE/SE
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results are dightly more accurate and provide a more uniform error distribution over the
domain.

One noteworthy observation regarding the three-dimensional code, concerns its
increased senditivity to irregularities in the spatial grid, compared to the two-dimensional
and axisymmetric versions. It is therefore imperative to keep the diver element in the
gpatial grid to a minimum. This increased sengtivity is common among numerical
schemes. An explanation for this behavior involves the error accumulation due to the
increased number of calculations in a three-dimensional code, compared to the lower
dimension versions.

In the next chapter, we will return to the one-dimensiona verson of the solver,
developed in Chapter 3. We will study its dissipative/dispersive behavior in detail and offer

amodification to it, regarding the limit of small Stefan numbers.
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Figure6.1: Geometry for 3D formulation
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Figure 6.2: Vanishing errorsfor case 1
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Chapter 7

THE STEFAN-NUMBER INSENSITIVE CE/SE

PHASE-CHANGE SCHEME

The space-time CE/SE method was applied in the previous chapters to heat conduction
problems with isotheemal phase change, for one-dimensional, two-dimensiond,
axisymmetric and three-dimensional geonetries. The results for several cases were
compared to available anaytical and semi-analytical solutions. The method’s convergence
and error behavior were also studied and it was found to be effective and accurate for these
applications. No nonphysical cillations in the phase change interface were detected.
Therefore, the SE/CE scheme was recognized as being able to resolve one of the
weaknesses mentioned for the numerical simulations of the enthal py method.

This chapter addresses the second difficulty associated with the enthalpy method, i.e. the
limit of small Stefan numbers. It was shown, in Chapter 4, that numerical smulation of the
Stefan problem using the CE/SE method is capable of providing accurate results for both
large and small Stefan numbers. However, for small Stefan numbers, the accuracy had to

be improved by using an alternate method for calculation of the first-order derivative terms.

149
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The original CE/SE phase change scheme, like other numerical schemes for the enthal py
method, loses its accuracy and becomes dissipative for small Stefan numbers. The
dissipation, nevertheless, is adjustable. The adjustment, that was employed in order to
obtain accurate results for small Stefan numbers, is an ad hoc feature and therefore
undesirable. Recently, space-time CE/SE methods have been designed for solving fluid
flow problems without being sensitive to the size of the Courant number ([80], [29]). Using
an anaogous concept, it is possible to design a CE/SE scheme that is, to a considerable
degree, insengitive to the size of the Stefan number.

In this chapter, the problem formulation using the enthalpy method and the origina
CE/SE method applied to it, for one-dimensional geometries are summoned from Chapter
3. The dissipation of the original method is then studied through numerical experiments
and is found to vary with the Stefan number in a way that the accuracy reduces for small
Stefan numbers. The new insensitive CE/SE scheme is then described for numerical
simulation of phase change problems. A single-phase Stefan problem is selected as a
benchmark problem for comparing the behavior of the origina and the new scheme.
Finally, the convergence and accuracy of the new scheme is assessed withou any case-

dependent adjustment.

7.1 TheOriginal One-Dimensional Scheme

As developed in Chapter 3, the space-time CE/SE phase change scheme can be written as
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where the second-order derivatives, required for calculation of F; are determined as

described in Section 3.1.2. The first-order derivatives are calculated from

(YX)?:(Y;)TW++(YX')?W' (7.2)
with
TR
W = AYX)J@' (7.3)
do g gl
and

(7.9

Note that, to avoid dividing by zero, in practice a small positive number such as 102 is
added to the denominator in Eq. (7.3). The parameter Y , in the above relations, can be

gither Hor T. Thevalueof a isusudly set equa to 1. As mentioned in [69], the above

weighted average provides the necessary numerical damping. In other words, a  can be
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regarded as an adjustable dissipation parameter. It was by adjusting this parameter that
accurate results were obtained for the cases with small Stefan numbers in Chapter 4. The
ad hoc nature of this feature is undesirable. The new CE/SE scheme introduced in the
following sections is designed to overcome this difficulty. Before introducing the new
scheme, however, it is of value to study the dissipation of the above scheme, and, in

particular, its variation with the Stefan number.

7.2 TheDissipative/ Dispersive Behavior of the Numerical

Scheme

Numerical results of Chapter 4 show that, when the Stefan number is small, in order to
sharply capture the discontinuities, the value of a, (see Eq. (7.3)), needs be adjusted.
Experiments conducted in Chapter 4 aso confirmed that the dissipation of the schemes
reduces by reducing a . The dispersive behavior, however, increases by reducing a . At
the limit a =0, the resultant scheme is purely dispersive, if second-order derivatives are
excluded.

Since the schemes with a =0 are linear, their behavior can be studied analyticaly.
Two versions of the schemes with a =0 were studied in sections 3.3.1 and 3.3.2. Their
dispersive behavior is manifest in Figs. 3.3-3.8, through the presence of negative
amplification factors. Figures 3.3-3.5 represent the behavior of the linear scheme without
second-order derivatives. The pure dispersive behavior is deduced because the

amplification factor covers the entire range of [-1, 1]. Further, it was shown that reduction
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of the Stefan number has a destabilizing effect. This destabilization, however, is ,by no
means, sever enough to stall the program at the limit of small Stefan numbers. Stable
results can sill be easlly obtained. Accuracy, on the other hand, is reduced by the
oscillations that appear close to the discontinuities, and that are caused by the dispersive
behavior.

The non-linear schemes, having a =1, do not show the above- mentioned oscillations.
Their accuracy at the limit of small Stefan numbers, however, is reduced due to another
factor: increased dissipation. To show this numerically, the original phase change scheme
of Section 7.1 is applied to the benchmark phase change problem of Section 3.4.2, for
Stefan numbers ranging from 0.01 to 10. The solution to this problem contains a
discontinuity in the enthalpy field. A space-time grid was selected which provided stability
for the range of interest. The width of the discontinuity was then measured. For the selected

space-time grid, for S, =10, the discontinuity was captured very sharply, over a length
dightly larger than the width of one cell. By reducing the Stefan number, the discontinuity
became smeared. For example, for S =0.01, the discontinuity is spread over more than 7
cells. These results are shown in Fig. 7.1. Two facts can be deduced from this figure:

For Stefan numbers close to, and larger than, 1, the dissipation of the method is very

low. This leads to accurate capturing of moving discontinuities.’

! Thereisadisspation term that automatically acts only in the neighborhood of the discontinuities and serves as ameans of suppressing
nonphysica oscillations without affecting the solution &t the smooth regions [80].
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For smaller Stefan numbers, the method manifests dissipation and the dissipation
increases by reducing the S. Furthermore, the rate of increase of the dissipation also
increases by reducing the Stefan number.

The objective is then to design a CE/SE method which is less senditive to the value of S

than the origind scheme (with a = 1), and which aso avoids the dispersive behavior of

the scheme witha = 0.

7.3 A New CE/SE Phase Change Scheme

Recently a new generation of CE/SE schemes was introduced ([80], [81]). These schemes
provide, for the Euler equations, CE/SE solvers that are insensitive to the local value of the
Courant number in the flow field. A new CE/SE phase change scheme may be designed by
adopting the same concept. The methodology, however, differs in some aspects in order to
accommodate the physics of phase change problems.

It is worthwhile to emphasize that the new and the origina CE/SE phase change
schemes differ only in the calculation of the first-order derivatives, namely in Egs.(7.2-7.4).
As introduced in [81], define points M, M, P, and P as indicated in Fig. 7.2. It is
through the variable parameter, O£t £1, that the automatic adjustment will occur in the
new method'’ s dissipation. Using points P" and P instead of points D and F, respectively, a

new verson of Eqgs.(7.2-7.4) can be written as

)T+ () (75)
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with

Wt =, [(Aj T]ET . (7.6)

and

I 1+t )Dx/4 "’

W YMoyn W \n YooY
(;) FRT. (I)j m

(7.7)

In order to calculate Y F”, and Y; , first-order Taylor series are used around the expansion

points of A and C, respectively. In asimilar way to that mentioned in [81] for the advection
equation, it can be shown that, for t = 1, this scheme becomes equivalent to the original
phase change scheme, i.e., Egs.(7.2-7.4) with a = 1. On the other hand, for t = 0, it
becomes equivalent to the scheme composed of Egs.(7.2-7.4) with a = 0, which produces

undesirable dispersive behavior. To overcome this problem, another scheme was
suggested in [81], which was composed by combining the original and the above schemes

asfollows
()7 =) w75 ) we 79

with W* from Eq.(7.3) and (\? j)T from Eq.(7.7).
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The parameter O£t £1 needs to be defined in a proper way that accounts for the
physics involved. Consider the following parameter (in practice, a very small positive

number is added to the denominator in order to avoid dividing by zero)

_ Dx
H-" H

j+y2 -

z (7.9

n
i-12

The parameter z is related to the inverse of an approximation of the spatial derivative of
the enthalpy field. By considering a reference state where the vaue of J.“ﬂ/z -H} 2

equalsthe value of Dx, areference z , (z,, ), can be defined that has the value of 1. This

reference z can then be used in order to non-dimensionaize z as

7" = (7.10)

Dropping the * superscript, the parameter t isdefined as

iz, z£1

t =
iL z>1

(7.12)

One feature of the above definition is that the small values of t occur closer to the phase

change interface. Further, the larger the latent heat of fusion of the phase change materid,

the smaller the minimum vaue of t will be. Therefore, for moderate temperature
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gradients, the largest deviation from the origina CE/SE phase change scheme occurs for
the small Stefan numbers and close to the phase front.

The scheme based on EQ.(7.8) was programmed using the above definition for t .
Although the corresponding Euler scheme was shown to be highly accurate [81], the
resulting phase change scheme dill suffered from unwanted oscillations. Another

modification was then made in the definition of t . Thistime alower limit was also set for

it

iC,, z £C,
t =tz, C,£z £1 (7.12)
11, z >1

where C; and C,, are arbitrary parameters to be defined. Numerical experiments were used
in order to set suitable, case-independent values for these parameters. A highly accurate
non-oscillatory scheme resulted by setting the values of C; and C, in Eq.(7.12) equal to the

Stefan number itsdlf, i.e, for S<1

1S, Z £S,
t =tz S£z£1 (7.13)
11 z>1

Therefore, the new CE/SE phase change scheme is constructed using Eq. (7.1) with the

first-order derivatives calculated from EQ.(7.8), and with t calculated from Egs.(7.9) and
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(7.10). Note that for S 2 1, no deviation from the original scheme is needed therefore,
t =1.

In the following section, comparison is made over a range of Stefan numbers, between
the original CE/SE phase change scheme, the new scheme, and yet another commonly used
fixed domain scheme adopted from [86]%. The benchmark problem used for these

comparisons is selected to be a single-phase Stefan problem, for which an anaytical

solution exists [92].

7.4 Numerical Resultsand Discussion

In order to compare the accuracy of the new modified scheme with that of the original
scheme, a single-phase Stefan problem is used as a benchmark, under the following
conditions.

Consider adab of thickness L = 1 with theinitial state assumed to be liquid at the fusion
temperature Tr. At t =0, the temperature of the surface at x =0 dropsto Tw and is
maintained at that value. The surface a& x = L is effectively insulated. The analytical
solution of this problem, containing the transient temperature distributions and the phase
front location, was discussed in detail in section 4.2.3. This problem is studied numerically

for Stefan numbers ranging from 0.01 to 10. The Stefan number is defined as

S =c¢ (Tf - Ty )/Lf where ¢ denotes the specific heat of the solid and Ly is the latent heet

of fusion. All cases are modeled using a uniform spatial grid containing 1,100 nodes. Other

8 See section 6.2.3 for adescription of this alternative method.
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parametersare T, =- 1.0°C, T; =0.0°C, while the thermal diffusivity and specific heats are

set equdl to unity.

Some of the studied cases are shown in Fig. 7.3-7.6 in order to illustrate the conclusions
that are drawn. Figures 7.3(a), 7.4(a), 7.5(a), and 7.6(a) demonstrate the temperature
distribution at t = 0.14 s for various small Stefan numbers. As can be seen, the deviation of
the results obtained by the origina CE/SE phase change scheme, from the analytical
solution, increases as the Stefan number is reduced. The modified CE/SE phase change
scheme, however, retains its accuracy at small Stefan numbers. Infact it does not show a
distinguishable sensitivity to the magnitude of the Stefan number. The same observation
can be made from Figs. 7.3(b), 7.4(b), 7.5(b), and 7.6(b). These plots represent the
corresponding enthalpy values. Again it is seen that as Stefan number is reduced, the
original CE/SE phase change scheme shows a dissipated interface while the modified
scheme consistently resolves the phase front sharply. Figures 7.3(a) and 7.4(a) also contain
the results of another commonly used method (from [86]). This third method shows
behavior similar to the original CE/SE scheme for S = 0.01. However, comparing Figs.
7.3(a) and 7.4(a), it is observed that by increasing the Stefan number, the error associated
with the original CE/SE scheme, vanishes at a higher rate compared to that of the method
of [86]. Furthermore, the origind CE/SE phase change scheme consumes less
computational resources, resulting in a much faster scheme.

It is also observed that, for these cases, the original and the modified CE/SE schemes are
both identically accurate for § > 0.5. For S > 1.0, as concluded from the formulations, the

two schemes become theoretically identical.
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The evolution of the interface location in time, obtained by the modified scheme, was
also compared to the analytical solutions, for § = 0.01 and S = 0.05. This comparison is
shown in Fig.7.7.

The computationa cost imposed on the CE/SE scheme by the modification, although
significant in one spatia dimension, will not be a factor in two- and three-dimensional
simulations. This is due to the fact that, while the main body of caculations increases
significantly by adding more dimensions, the extra computations needed for the
modification remain of the same order.

Before concluding this chapter, it is worthwhile to mention that the modified scheme is

easy to extend to higher dimensions.
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Chapter 8

A SPACE-TIME CE/SE NAVIER-STOKES SOLVER

This chapter provides a starting point for the future work towards construction of a general
phase change solver based on the previous chapters. In this chapter, the “no convection-no
density change”’ assumption made in the physica modeling of the problem is relaxed. A
full CE/SE Navier-Stokes solver is derived, in which, a new procedure is explored for the
treatment of the viscous terms. The program is validated for some standard benchmark
fluid flow problems, and proved accurate and ready to be extended to include phase change
phenomenon.

Both natural convection and density change have effects on the shape and speed of the
phase interface. From a physical standpoint, discussion on the kinematics of the freezing
and melting with density change is given in [97]. This paper aso includes considerations at
the molecular level. Further, Reference [98] provides a helpful analysis on the scales of
phase change in the presence of natural convection.

A front tacking formulation of the solid-liquid phase change, taking into account the

effects of the convection in the mdt is presented in [99]. In this paper, the change of

167
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density due to phase trangition is neglected. The melt is consdered incompressible and the
natural convection is modeled using the Boussinesq® approximation. The mushy zone is
treated as a liquid with very large viscosity. A finite volume method is used; however
specia numerica treatments were necessary to improve the stability.

Reference [100], presents a finite difference treatment of a one-dimensional phase
change problem with density change, again formulated using the front tracking approach.
In this paper, the density of the liquid phase, (modeled as incompressible), is assumed to be
much greater than that of the solid. A somewhat nonrealistic assumption that smplifies the
problem by selling the velocity of the liquid phase equal to that of the moving interface.

Reference [101] treats the phase change problem accounting for both density change
and convection effects. In this paper afront fixing formulation is used for two-dimensional
geometries. The liquid is, however, assumed incompressible and the effect of convection is
modeled through the Boussi nesq approximation.

Another paper that also uses a front fixing phase change modeling is [102]. This paper,
although only applicable for a speciad one-dimensional case, provides an anaytical study
on the effects of both convection and density change. A literature review on the subject is
also available in this paper.

A one-dimensiona enthalpy formulation of the phase change problem with density
change is available in [103]. This paper provides a single-domain formulation in which, the

solid phase is modeled as a liquid with infinite viscosity. The change of density is modeled,

% The Boussinesq approximation is based on neglecting the change of density in a fluid, everywhere except in the
buoyancy term.
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in this paper, using sources/'sinks on the interface. The convection effects, however, are
neglected using a low gravity assumption.

There are other references, such as [104], [105], [106], which deal with the effect of
convection on the solid/liquid phase change phenomenon, neglecting the density change.
References [104] and [105] aso contain some experimental results. Further experimental
results concerning melting of ice spheres, under forced and mixed convection, are found in
[107]. Reference [108] provides extensive experimental results of convective solidification
of galium, and is considered as a benchmark for validation of numerical results.

Although we do not intend to provide, here, a thorough literature review on the subject,
a brief survey reveals that many researchers have addressed the convection effects of the
phase change problem, without density change. The density change effect, on the other
hand, has received less attention, mainly due to the complexity of the subject. Very little
literature is available concerning both effects. In the works that do consider both effects,
other smplifying assumptions are used, reducing, to some degree, the generdity of the
approach.

In the search for a more general approach, a recent study, [109], is noteworthy. This
paper, addresses a genera multidimensional liquid-liquid transition of phase. The two
liquids are considered to have different densities; further, one of the liquids is assumed
stationary. This paper provides mathematical proof of the existence of a unique solution for
the above problem, formulated using compressible fluids each expressed by an equation of
state. Although no numerical implication is provided in this paper, because of its generadlity,

this is the approach that we elect to follow here. The objective would then be to build a
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general solver, keased on a single-domain formulation, which expresses both solid and
liquid phases. The generality of the approach may even alow, through the future work, to
also add the gas phase to the system.

The choice of the numerica method is another important isste to address. As mentioned
above, one difficult aspect of the problem of interest is the natural convection effects. A
study of the literature on the numerical modeling of natural convection through a full
Navier-Stokes formulation, (no phase change involved), reveals convergence difficulties
related to low Mach number stiffness. Most of the compressible solvers used for this
purpose, need low Mach number preconditioning to overcome this problem, see for
example[110], [111].

A feature observed (see [112]) for the space-time CE/SE method, is that the method
performs well through a wide range of Mach numbers, including low Mach numbers.
Therefore, it islogicd to expect that the CE/SE method could be an effective aternative for
numerical smulation of natural convection too. If this hypothess is validated through
numerical experiments, it could limit the special treatments needed for pre-conditioning
and stabilizing of present numerical methods used to simulate natural convection.

Few papers are available on the development of the CE/SE Navier-Stokes schemes.
These papers, eg., Refs. [112], [69], [66], [113], differ mainly in the method they use for
treating the viscous terms. In this chapter, we use an approach for which the theoretical
basisis discussed in [79]. The CE/SE method of this chapter, adso differs from the above-
mentioned references in the fact that, here, the gravity-related body force is treated as a

source term.
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The following sections explain in detail the development of this CE/SE Navier-Stokes
solver, in two spatia dimensions. The three-dimensional extension would be straight
forward. A standard benchmark problem, i.e., the driven cavity problem, is used to validate
the computer program. This chapter will not cover validation cases including change of
phase. The phase change related parameters and related details, however, are included in
the program. As mentioned before, this chapter serves as a sarting point for the

continuation of the future work related to this research.

8.1 Governing Equations

As explained in the above introduction, compressible Navier-Stokes equations are used
with a body force due to the gravity. In two spatial dimensions, these equations can be

written in conservation form as follows (see, [90])

JF IG5 8.1)
it Ix Ty
where U, S, F,and G are vectors given by
eru e 0
é .0 é G
g=¢Yisz=e % a
ervi ST g i
e _( é U
& Eq &1- 1 gvy
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é 2 U é U
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g ruv-t, 3 g rvi+p-t, 3
gr E+pju-ut,-vt, - kT gr E+p)v-ut, -vt -KkT§

where r, u, v, and p represent density, horizontal component of velocity, vertical

component of velocity, and pressure respectively. Tota energy is denoted by E where

E:e+%@2+vﬂ (8.2)

and e isthe internal energy. Further, the shear stresses are calculated from

where r isthe viscosity.

One more equation is needed in order to close the system: an equation of state. For the
validation purpose, the ideal gas equation of state is used. This equation can be written as

follows
p=(@-Dre (8.4)

C
where g = C—” isthe ratio of specific heats.

v
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For the actual phase change cases, however, other equations of state need to be used. A
useful equation of state, which is aso valid for the liquid phase, is called the stiffened gas

equation of state[114] and can be written as
p=@-Dre-gB (85)

where g and B are constants, available in the literature, for different materias at different
ranges of pressure/temperature.

Note that once the energy field is calculated using the numerical method, the enthal py
field will be known. The temperature field can then computed from the enthalpy field,
using the same procedures that were explained in the previous chapters. The phase change

effects will, therefore, be accounted for in the Navier-Stokes code.

8.2 A Space-Time CE/SE Navier-Stokes Scheme

Consder Eq. (8.1). This equation is similar, in the form of representation, to the
axisymmetric governing equation, i.e., Eq. (5.6). Of course Eq. (5.6) is a scalar equation
while Eg. (8.1) is a vector equation. Therefore, the vector analogue of the same CE/SE
procedure used for the axisymmetric case, including treatment of the source term, can be
employed here. The integral governing equation can then be written analogous to Eq. (5.8).

The final CE/SE equation, therefore, becomes

3 3
Uur=§ R® / a s® (8.6)
k=1

k=1
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where
RO =89 { U(x¥,y®,t7%; j, ,n- y2)+

Dtg( ® 0 7 Dt/a i 2)} g [0
7 X Ye - t/ ’Jk’n_]/ -§1
and 1" s caculated from

(0K = {|f (Xél,k)’yél,k),tn - Dt/4 j, .- J/Z)ni"k)
+é(xél,k)’yél,k)’tn - Dt/4 j,.n- ]/2)n§"k)}8("k)

Note that the notation used above is defined in vector form as

Y (xytjn=vy" +(*x)';(x- x¢)

]

+(7, ) - v+ (v )i 1)

~

(8.7)

(838)

where Y canbe U, S, F,or G. In the above equation, first-order time and space

derivatives of the flux functions are needed. As explained in [79], the independent

parameters needed in this CE/SE formulation are U, U, and U . Therefore, using the

chain rule we have

Ty :ﬂyi ﬂUJ’
Tw ﬂUj Tw

,i=1,2,34,and j=1,2,3,4

(89)
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where y* iseither F or G, and w can be dither x or y. Further, y, and U, refer to
componentsof y~ and U , respectively. The derivation of the Jacobian components, i.e.

% are given in Appendix C.

I

Once % i=1,234, is caculated in the above mentioned manner, the time

derivatives of the flux functions, (needed in Eq. (8.8)), can be computed. To perform this,

the chain rule isused again

Ty :ﬂyi U
1t YU, ft

L. i=1,234,ad j=12,34 (8.10)

1 . , : . :
where ﬂ_tJ can be computed using the differential form of the conservation law, i.e. Eq.

(8.1)

—-
c

(8.11)

I
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1
—a | =2
X | T,
< |

It

An important issue to discuss next is the set of boundary conditions. The following

section summarizes the boundary conditions used in the cases studied in this chapter.
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8.3 A Noteon the Boundary Conditions

In order to apply the boundary conditions more accurately, in the Navier-Stokes
application, the ghost cells are defined differently, compared to the previous chapters.
Consider Fig. 4.2. Let the ghost cell shrink to zero areg, in a way that its solution point
becomes the normal projection of the solution point of the boundary cell on the boundary.
In this way the no-dlip boundary conditions, for the solid wall, are applied exactly on the
boundary. Since the main benchmark problem that will be studied in this chapter concerns
a sguare driven cavity problem, the boundary conditions are explained in reference to that
case.

The density boundary condition is assumed soft, i.e., the density of the ghost cell is set
equal to that of the boundary cell. Further, the equation of state can be used in order to

relate the energy boundary condition to that of pressure.

As mentioned previously, the derivatives of vector U , are also considered independent
variables. Therefore, boundary conditions are needed for the derivatives. Again consider
Eq. (8.1). The first component of this vector equation, i.e. the continuity equations can be
helpful in determining some of the derivative boundary conditions. The continuity equation

is

=0 (8.12)

and for a steady state problem, (such as the driven cavity problem), it becomes
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(r u)x+(rv)y=rxu+rux+ryv+rvy=0 (8.13)

but the velocity components vanish on the solid boundary, therefore, on a solid wall

u +v. =0 (814)

Finally, for the square driven cavity problem, consider the horizontal stationary wall. The
no-dip condition requires the u component of the velocity to vanish along x-axis. This
implies

u =0 (8.15)
and using Eq. (8.14)

v, =0 (8.16)

Note that Egs. (8.15) and (8.16) are also valid for a horizontal moving wall, as long as it
moves with a constant speed. Further, a similar argument shows that Egs. (8.15) and (8.16)
are dso vadid for stationary vertica walls. These equations lead to two of the momentunt

related derivative boundary conditions, i.e.,

AT 8.17)
é ﬂ X Uwall

and

61U, 0

=0 (8.18)
(S]
é ﬂ y Hwall
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The other two momentum-related derivative boundary conditions, i.e., those related to

U, C U, C _ _
Sﬂ ZE and S“ 35 can be considered soft. They can either be assumed equal to
e Ny Uyall é x Uwall

their counterparts on the boundary cell, or aternatively, they can be calculated based on
one-sided differences using the values of U, and U, on the boundary cell.

The derivative boundary conditions, related to the energy, as well as those related to the
density, can be considered soft.
The subject of the boundary corditions, for a Navier-Stokes scheme, till continues to

attract the attention of researchers. An interesting paper that covers this subject is[115].

8.4 Validation tests

The smplest validation case for a flow solver could be the case of a uniform flow in an
unbounded domain with nonreflecting boundaries. Therefore, in this section, we start the
validation process using this case. Then continue with a more complicated flow benchmark

problem of the square driven cavity.

8.4.1. The Uniform Flow Cases

The case of a uniform flow, in an unbounded domain with nonreflecting boundaries, was
studied using the computer program. The uniform flow of interest was imposed on the

boundaries of a unit square. Two different flows were used as initial conditions: 1) a
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uniform flow matching the one imposed on the boundaries, and 2) a uniform flow with a
different magnitude and flow angle, compared to the one imposed on the boundaries. Using
the former, the program was able to maintain the solution withou change for a large
number of iterations. Using the latter, the program was able to produce the correct flow.
The residuals were studied for these two cases and convergence, (to the order of machine

zero), was verified.

8.4.2. The Driven Cavity Problem

The problem considered here, belongs to a class of internal flows, usualy bounded, of an
incompressible, viscous, Newtonian fluid in which the motion is generated by a portion of
the container boundary.

An interesting reference, [116], contains a thorough discussion on the fluid mechanics of
the driven cavity. It dso offers a section on the importance of the problem and its different
applications, e.g., in mixing cavities used to synthesize fine polymeric composites.

As mentioned in [116], the overwhelming importance of these flows s to the basic study
of fluid mechanics. In no other class of flows are the boundary conditions so unambiguous.
As a consequence, driven cavity flows offer an ideal framework, in which, meaningful and
detailed comparisons can be made between results obtained from experiment, theory, and
computation. In fact, as hundreds of papers attest, the driven cavity problem is one of the
standards used to test new computational schemes. The most comprehensive comparisons
between the experimenta results obtained in a turbulent flow and the corresponding direct

numerical simulations (DNS) have been made for a driven cubical cavity. Finaly, driven
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cavity flows exhibit amost all phenomena that can possibly occur in incompressible flows:
eddies, secondary flows, complex three-dimensional patterns, chaotic particle motions,
instabilities, transition, and turbulence.

The speciad case studied here, however, concerns a two-dimensiona sgquare cavity,
assumed to be full with no free surfaces, and gravity is assumed to be unimportant. The
motion in the cavity is generated by the constant-speed motion of the lid. The geometry of
this case isdepicted in Fig. 8.1.

As mentioned above, the problem of interest is an incompressible case with no gravity.
The acceleration of gravity, in the program, can be easily set equal to zero. The presence of
compressibility in the program, however, complicates the matter. Because of
compressibility, the problem is no longer defined by the Reynolds number (Re) only. The
Mach number also needs to be kept smal in order to generate results comparable to the
incompressible benchmarks. Another numerical issue to consider is that the Courant-
Friedrichs-Lewy (CFL) number of the lid must be kept as large as stability alows, for
accuracy purposes.

Before defining the specific problem, it is worthwhile to note that, if only the steady
state, incompressible, driven cavity problem was to be solved, the CE/SE method would
not be an efficient choice. Usage of the velocity-stream function approach [90], for
example, would provide results much more efficiently. Once the transent features of
natural convection and phase change are considered, however, the advantages of the CE/SE

method become more pronounced.
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The problem studied concerns a unit square cavity, filled with air (treated as an idedl

ru, L

ga), for Re= =400, where u, is the velocity of the lid, and L denotes the

C,nm
dimension of the square cavity. Further, Pr = ‘;( =0.71, and Mach number of the lid is

equa to 0.05. A quiescent flow is used astheinitial condition.

A number of unstructured grids were used to modd this problem. Grid independence
can be assumed to be achieved, to an acceptable degree, using a 200 © 200 spatia grid.
The streamlines depicted in Fig. 8.2, clearly demonstrate three characteristic vortices of this
flow. In Table 8.1, the position of the location of the core of each characteristic vortex is
presented, for each grid. The last column contains Ghia' s results from [46]. As can be seen,
the bulk flow features are resolved, even on a relatively coarse grid. The details of the
weakest vortex, i.e., the bottom left vortex, however, are not resolved for grids coarser than
200 200.

Figure 8.3 compares the horizontal component of the velocity, on the vertical centerline,
for different grids, with results from [46]. Similarly, Fig. 8.4 compares the vertical
component of the velocity, on the horizontal centerline, for different grids, with results
from [46].

Two conclusions can be drawn from these figures: 1) The CE/SE method, on the 200 -
200 grid, accurately captures the flow details, and 2) The convergence is nortoscillatory,
for this Re number. The nonoscillatory convergence means the refinement of the grid

results in more accurate solutions that are obtained monotonicaly. This feature suggests
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Core | 75 75| 117 117| 150" 150| 200" 200
Vortex [116]
(x,y) | Mesh | Mesh M esh M esh

x(m) | 0.57 0.56 0.56 0.56 0.56
Primary

y(m) | 0.63 0.61 0.61 0.61 0.61
Bottom | x(m) | 0.90 0.89 0.89 0.89 0.89
rignt | y(m) | 0.10 0.12 0.12 0.12 0.12
Bottom | x(m) | 0.06 0.05 0.05 0.05 0.05

left  [y(m) | 003 | 0.04 0.04 005 | 0.05

Table 8.1: Location of the core of the vortices, resulting from
usage of different grid spacing

that Richardson’s extrapolation can be employed, to provide a more accurate solution, by
using the results from two coarse grids. An interesting reference on the possibility of the
oscillatory convergence and its trestment is [117].

Figure 8.5 displays the residua history for the 150 ~ 150 grid. The residuals are defined
based on the absolute value of the difference between the solutions of two consecutive
time-steps. Thisfigure, therefore, confirms that a steady state solution isin fact reached.

Figures 8.6 and 8.7 provide visual demonstrations of the second-order accuracy of the
method. The error demonstrated in Fig. 8.6 is computed based on the absolute value of the
difference between the CE/SE method's results with those of [46], for the horizontal
component of the velocity at the center of the cavity. The error demonstrated in Fig. 8.7 is

computed based on the x coordinate of the location of the core of the bottom right vortex.
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The accuracy of the scheme is assessed based on the above cases. The program also
contains body force and phase change features that need to be verified using further

relevant benchmark problems in the future.
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Figure 8.1: Geometry of thedriven cavity

Figure 8.2: Streamlinesfor the 200

200 grid
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Figure 8.6: Demonstration of the two-dimensional CE/SE
Navier-Stokes scheme's second-order accuracy, based on
velocity of the center of the cavity



189

107" -
S
=107 F
Sal i
-3 1 1 1 1 1 1 1 I 1 1 L L L L_L_1 I
106 107 10"
Mesh spacing (m)
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CONCLUSIONS

The numerical simulation of the Enthalpy formulation, for the Stefan problems, is known to
be limited by two difficulties: 1) non-physical waviness in the temperature distribution, as
well as unwanted oscillations close to the phase interface, for isothermal phase change, and
2) convergence and stability problems, as well as inaccuracies due to overwhelming

dissipation of the numerical schemes, at the limit of small Stefan numbers.

The method of space-time conservation element and solution element is known for its low
dissipation and dispersion errors, as well as its distinguishingly high capability of
accurately capturing discontinuities. Therefore, this numerica method, which has been
mainly applied to fluid flow problems, represents an dternative for numerical modeling of

moving boundary problems (Stefan problems) such as solid/liquid phase change.

In this dissertation, space-time CE/SE schemes were developed, for the solid/liquid phase
change problems, in one-, two-, and three- spatial dimensions. A separate formulation was

also presented for the sub-category of axisymmetric problems.

The equivalence of the CE/SE formulation with the conventional formulation was proven

mathematically. Each scheme was then validated, numerically, using benchmark problems
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without and with phase change. Both analytical and experimental results were used in the
validation process. The results revealed that using the space-time CE/SE method, the first
problem associated with the numerical modeling of the enthalpy method is eliminated. No
non-physical waviness or unwanted oscillation was detected in the results. The second
problem, however, still existed. Although accurate results were obtained for small Stefan
numbers using the CE/SE method, a case-dependent adjustment in dissipation was needed.

This presented the potential for a modification in the origina schemes.

An analytical stability study was then conducted on the one-dimensional scheme, using the
von Neumann stability analysis. This analysis also revealed the dissipative/dispersive
behavior of the numerical scheme and its variation with the Stefan number. The results of
this analysis lead to a necessary stability condition, as well as the devel opment of a CE/SE

scheme that was, to a considerable degree, insensitive to the value of the Stefan number.

In summary, accurate numerica smulation of the enthalpy method, for the solid/liquid
phase change problems, is possible using the space-time CE/SE method. Further, the
method can be modified to automatically adjust to the value of the Stefan number. The
approach, therefore, presents an alternative potentialy capable of treating general phase

change problems.



FUTURE WORK

The research presented in this dissertation lays the ground for extensions in several aspects.

The following presents alist of potentia directions to further proceed.

a) Relaxation of the underlying assumptions:
i. Relaxation of the no-convection in the melt assumption,
ii. Relaxation of the no-density change assumption,
lii. Moving towards a more general solver by adding the radiation heat
transfer,
iv. Moving towards a more genera solver by adding the gas phase.
b) Further experiments with the generated solvers. For example, by adding
simple modules, the codes can support variable properties:
I. Study of the cases where the properties vary with temperature,
ii. Study of the cases where properties are anisotropic inside each
phase (variation with spatial coordinates).
c) Improving the accuracy and efficiency of the numerical approach:
I. Usage of the specid CE/SE schemes suitable for highly non
uniform grids, in order to reduce the sengitivity of the solversto grid

irregularities.
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ii. Usage of the Richardson’s extrapolation (in reference to the driven
cavity problem in Chapter 8), for capturing the solution details using
coarser grids.

d) Usage of the space-time CE/SE phase change solvers in the specia

applications, some of which were mentioned in Chapter 1.
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APPENDIX A

This appendix contains the derivation of the insulated boundary conditions for temperature,
on an arbitrarily oriented boundary in athree-dimensional geometry. Figure A.1 depicts the

geometric parameters involved.

FigureA.1: Geometric parametersinvolved in the
transfor mation of the coordinates

The origina coordinate system of the problem is xyz. Triangle V1V2V3 represents an
arbitrary boundary face. This triangle is shared between a tetrahedral boundary cell called
cell ‘b, and its corresponding ghost cell referred to as cell ‘g’. The unit outward vector,

normal to this boundary face, is represented by

n=ne +neé +ne (A1
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where € , €, and &, arethe basic unit vectors of xyz system.

As mentioned in previous chapters, it is usually easier to define the boundary conditionsin
a boundary fitted coordinate system, such as XYZ. As can be seen from Fig. A.1, this new
coordinate system can be generated by rotating the original system until the transformed z
axis, i.e., the Zaxis, becomes parallel to n. Further, as a matter of convenience, the
rotation is selected such that the transformed x-axis, i.e, the X-axis, becomes paralld to
V1V,. The origin of the new system can be selected arbitrarily. Again, for convenience in
programming, a trandation is also employed and the origin of the transformed system is
selected at vertex V1 of the boundary triangle.

Before starting the derivation of the transformation matrix, referred to as T, it is of

value to outline the procedure of defining second-order derivatives of the temperature. Let
matrix T represent the transformation of the coordinates from xyz system to XYZ system,

as illustrated in Fig. A.2. The inverse transformation will be referred to as T ', The

procedure can then be summarized as follows.

1. Thevalue of the temperaturein cell ‘g’ is set equal to that of cell ‘b’.
2. From a physical point of view, the insulated boundary condition of temperature in
the XYZ system can be defined as follows

a. The firg-order spatial derivatives:
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Figure A.2: Transformation of the coordinate system
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C. The second-order mixed derivatives containing time, i.e. T

xt !

T

T .

zt*

since the transformation is accomplished in space only, the time coordinate

remains intact. Therefore, the formula derived for the first-order derivatives

can be used for these mixed derivatives by replacing each first order

derivative by its corresponding second-order derivative mixed with time

differentiation.

3. The invearse transformation can then be used to transform the vaues of the

derivatives at cell ‘g’ back to the original system xyz.

To derive the transformation matrices for the first- and second-order derivatives, the

metrics of the transformation are needed. For this purpose return to Fig. A.1. Let’s refer to

the basic unit vectors of XYZ systemas €, , €, , and €, . Obvioudly,

where

X d nY d d

d = X(Vz)' X(V1) d = Y(Vz) B y(\/l) ’ dz - Z(Vs)' Z(V1)

(A.4)

(A.5)

(A.6)
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d= \/(X(Vz)' X(Vl))2 +(y(V2) - Y(Vl))z +(Z(V2) - Z(\/l))2 (A-7)

Finaly, the unit vector &, can be found using the cross product of the other two unit

vectors, i.e.
e & §
& =& & =|n, n, n, (A.8)
d, dy d,
Therefore,
8 °mg +mg, +mé (A9)
where

m,=n,d,-n,d,m =n,d,-n.d,,andm,=n,d, - n d, (A.10)

Consider an arbitrary point (X, Y, Z) in the XYZ system. Using Egs.(A.4), (A.5), and

(A.9), and also taking into account the trandlation of the coordinate systems, the position

vector of this node can be written as follows
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X8 +Y& +Z8, = X(d,8,+d8 +d,8)
+Y(meé +me, +m._e,)
+Z(né +n@, +n,@,)
=(Xd,+Ym, +2Zn)é (A.12)
+(Xd, +Ym, +Zn, )é
+(Xd,+Ym,+2Zn,)e,
=[x- x()]&, +ly- yW)Ie, +[z- zv)]é,

or in matrix form

- x(V)u  éXu
&- yV)a=T &Yy (A.12)
gz' Z(\/l)H 8ZH

where

édx I’rIX nX@

=_86 a

T= égy m, ny (A.13)
gjz mZ nzé

is the coordinate transformation matrix that can be used, for example, in the geometric
calculations related to the ghost cell as mirror image of the boundary cell with respect to
the boundary. However, further calculations are needed for transformation of the

derivatives. Before proceeding to that subject, it is worthwhile to note that the inverse

transformation, T "%, is also the transpose of the matrix T and can be easily found to be
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éd, d, d,u

— é X y Zu —

T :(:emx m, m,;=T (A.14)
&, n, nH

In order to transform the first-order derivatives of the temperature, the chain rule can be

used as follows

T _9T 9% 9T iy 9T Az
X Ix7IX TyT1xX 9z9X
T _irax iy ryz (A.15)
v x99y 9yTY 9z 1Y
JT _ITux fTey Tz
12 1x9Z 9Yy%1Z 19Yz1z

—— — — ——— — —

Differentiation of Eq.(A.12) produces again the Jacobian matrix of the transformation

efix  Tx  fixd

oy Iy Te g mone

&x Y yzu €y ™ na=T (A.16)
%ﬂﬂ_; 1111_5 1111_25 g, m njg

which can be used to write Eq.(A.15) in the following matrix form
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eIy ey

u e u
&1 X al Xy
eMTa_grella
éqyu éqyu
éqr U éqr u
e-u e
8124 elzg
ATy AT
&g Xy
Ta_relTa
éqyu éqyu
epTl  éqr U
e—u e _J
ezg 87Z44¢

(A.17)

(A.18)

The chain rule can again be used to provide the transformation matrix for the second-

order derivatives. This transformation matrix will be a 9 by 9 matrix, with each row

transforming one of the 9 spatial second-order derivatives. As an example, one row of this

matrix is derived below. Consder the derivative Txx, usng the first row of the

transformation matrix T ", we can write

The same row of the same transformation matrix can be used again to produce

&,
-

> (D> (D> > (D
= ——‘ﬂ
x
g 22
=]
=po]

o
NQ_
|
<
—=
X

&,
=

|
X

D> D D

SLI [L ]
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gﬂ i éNT /1 xuil
| IU
RPN e
e éﬂT/ﬂzH{)U
& i eﬂT/‘ﬂxuuu
d, d];;” o, o, o] &r/mydu
el @ﬂT/ﬂzupu
gﬂ i eﬂT/‘ITquu
g 1 gﬂT/‘ﬂz
8 1 HIOG
6 &T, il
5" (G
do. d, dJgn g
g grszH
: €T, U
d, dz]gdx d, dz]grwgug
é 2t
5 €T, Uy
u-
§dx d, dz]gTyzag
&d, d, U €T,
u u
&9, g
&d,d, u &r,u
(S u u
&0 el
T 8,00 8,0
&, d.q e,
& g U ér U
e ue™u
. d,0 &,
&,d, 0 &b

(A.19)
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The remaining rows can be derived similarly and the final transformation becomes

€T U

€T,
& u or u
&' ( é'w(
é:rZXH észH
ngvl] grxyl]
€T, U=M €1 U (A.20)
& "y &
Tni el
er., u er u
&% é7(
ehe i &0
u u
a a

P
N

9]
N

where M =m.,andfor i=1,..,9, j=1..,9 itscomponents are

ij?

rnll:dxdx’ ran:dxdy’ rnl3:dxdz’ r‘n14=dyd><1 n]15=dydy’ rnle:dydz’

Ifnl7 :dzdx’ rnlS :dzdy’ rle :dzdz’
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m41:rnxdx’ rn42:rnxdy’ m43:rnxdz1 m44_mydx1 m45=mydy’ m46=mydz’
m47:mzdx' m48:mzdy’ m49:mzdz’

mg, =m,.m,, ms, =m.m,, mg; =m, m,, mg, =m, m, mg; =m,m,,
m56:rnymz1 m57:mzmx1 m58:mzmy1 m59:mzmz’

mﬁl: nx’ m62:mxny’ m63:mxnz’ m64:mynx1 m65:m r‘|y’ m66:m nz’
m67:mznx’ m68:mzny’ m69:mznz’

r.n71:nxdx’ rn72:nxdy’ m73:nxdz’ m74:nydx’ m75:nydy’ m76:nydz’

Conveniently, the inverse of this transformation matrix is aso equa to its transpose,

therefore
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T Tl
or U e u
&' w é'w(
é:rzxg eTZXH
grxyl’J STXYU
ér =M T ér, U (A.21)
&’ e
el el
er u er.u
é7u é %
el u €Ty, 0
u u
grzzu STZZU

The procedure outlined in the beginning of this appendix, is then completed by using
Egs.(A.17) and (A.20) in step 2, and using Egs.(A.18) and (A.21) in step 4 of the

procedure.
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APPENDIX B: AN UNSTRUCTURED THREE

DIMENSIONAL REGULAR GRID GENERATOR

This appendix contains details related to one of the three-dimensional grid generators used
in this research. The grid generator of interest is unstructured, but is particularly
programmed to generated regular grids in which the minimum angle is kept as large as
possible. As is well known, the minimum angle in the grid is inversaly related to mesh
originated errors. To keep the grid regular, cubic building block are used. Each cube is
divided into tetrahedra cells. The block of tetrahedral cells are then assembled together to
produce the region to be meshed.

There exists a number of ways to divide a cube into tetrahedral cells. Each method
produces produce its own specific number of tetrahedral cells inside the cube. This number
can be 5, 6, 12, etc. An study on the resultant tetrahedral cells from each dividing method
shows that small angles results from any division method that contains divisions requiring
drawing of the cube's larger diagondls, i.e.,, diagonals FB, DH, AE, and GC in the
following figure. It these diagonals are to be avoided, the cube can be divided into 5

tetrahedral cells. All triangular faces will have angles of at least 45 degrees. One specific



225

tetrahedron will consist of equilateral triangles for its faces. The overal mesh will have
very good quality.

The drawback of this method is the fact that it can not be fitted easily to the curved
boundaries. Therefore, this grid generator is used in this research, for geometries without

curvature. Other grid generation methods, such as the advancing front method are used for

curved geometries.

The following contains an illustrated explanation of the division method applied on a cube.

Consider the following cube (ABCDEFGH)

F E
G i H
|
|
D __1__Jc
/
A B
Draw diagonas GE, GB, and BE
E
H
I
|
|
JINRVAT
//
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The firgt tetrahedron (GHEB) is then built. For demonstration purpose, this tetrahedron is

cut from the origina cube and shown separately below.

F E E
G - G
C
A B B
On the remaining polyhedron, draw diagonals DB and DG

F E
G

A B

The second tetrahedron (GABD) is then built. For demonstration purpose, this tetrahedron

is cut from the original cube and shown separately below.

On the remaining polyhedron, draw diagonal DE
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F E
GE

The third tetrahedron (EBCD) is then built. For demonstration purpose, this tetrahedron is

cut from the origina cube and shown separately below.

F E E
G -
D D C
B B
The remaining polyhedron is readily divided into the fourth and the fifth tetrahedral cells,

i.e., FEGD and GDBE. For demonstration purpose, these cells are shown separately below

F E G "
D ’ B
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Examination of the sub-elements of the cubic block shows that the next block can not be
generated only by trandation of the first block. This difficulty originated from the fact that

the larger diagonas needed to be avoided. The following figure demonstrates this problem.

As can be seen, if the second block (A'B/C'D'EF'G'H') is assembled on the first block,
triangular faces will not match since edges EB and GD' cross each other. A rotation would
be needed; repeated rotations would complicate the computer program. One way to
overcome this difficulty can be explained as follows. Imagine that the mirror image of the
block ABCDEFGH (containing 5 cells) with respect to face BCEH is attached to the first
block at face BCEH. The new block containing 10 tetrahedral cells can then easily generate
additional blocks only by trandation in the horizontal direction. A smilar technique can be
used in the other two directions of the coordinate systems. Finally, the building blocks that
can be easily assembled on each other, without any rotation, consist of 8 cubes attached

together. The final building block contains 40 tetrahedral cells.

A computer program is then written to generate a prescribed domain, filled with the above

40-cell blocks.
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APPENDIX C

In this appendix, the derivatives of the flux functions, related to the CE/SE Navier-Stokes
formulation, are derived. The first step is to express the flux functions F and G in terms
of the components of vector U . For clarity, we repeat the definitions of vectors F , G, and

U from Chapter 8:

-

(C.1)

(]
1
> D D> D~
-

e
m < <
e enl ey enlY e end

ru
2
ru“+p-t,
ruv-t,
rE+pu-ut  -wvt, -KT,

(C.2)

T

1
@KCD) D D D> D
[(@ N e anl anl en exd

rv
ruv-t,
2
rvi+p-t,,

ar E+p)v-ut, -vt - KT}

(C3)

Oh
I

@D D> > D> D
(e} el enly e end

(@]
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In the above definitions, the pressure is substituted for, using the stiffened gas equation of

state, i.e. EQ. (8.5). Further, Eq. (8.3) is used br subgtituting the shear stresses. The flux

functions can then be expressed in terms of the componentsof U as follows

F=U, (C4

f
Y
b (C.5)
U

(C.6)

u
a (C.7)
0

G, =U, (C9)
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uU,u
G,=F= 613
. C.9
_ m?(Uy)z _ UZ(UY)1+(UX)3_ U3 (Ux)lu ( )
eV, LF U L)
2 é .2 2
6= Ul g plu, - Lu 60 WS Y
1 ¥ gev1 o0 19 Hb (C.10)
g“‘B gmgz(uy)s - 2U3(UZ)1_ (Ux 2 +U2(U>2< 13
3 & U Ul) U, Ul) G
i é :s2 25U W]
6 =g, @- 00, - ST Bl gy
1{ 8 2 g U, g U, g BH b
U U.lU ¥
Em$gz( y)3 2 3 )2/)1_ (Ux)z +U2(U>2<)13 (C.ll)
3 Ui U L) U L) a
u,¢b,), V.0, @), U
m-=¢ ) 2 T ) >0 KT,
e Uy (Ul) U, Ul) a

Now that the flux functions are expressed in terms of the independent variables, the
Jacobian components, needed in Eg. (8.10), can be derived by as follows. Differentiation of

Eq. (C.4) leadsto

1F _IR _TR _,
U, U, U,

(C.12)

=1 (C.13)
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Differentiation of Eq. (C.5) yields the following

.2 ~ A .2 L2

ﬁ_gﬁgﬂ-bgg&g S0 g

U, U, g 2 gulﬂ UlﬂH
2 ? (Ux)z AUZ(Ux)l (Uy)3 3(Uy)1

ZMé 2 2 ta 3 2
3 & (Ul) Ul) (Ul) (Ul)

ﬂFZ :(3_ "‘) &_'_ﬂ (UX);L

T, U, 3 (u,)

U
TF, g gy Ys. 2 y);
U, U, 3 ()
1K =
=g-1
10, °
Differentiation of Eq. (C.6) provides
ﬂFz_ U,U,
ﬂUl (Ul)z

é(uy)z U2(Uy)1 (Ux)s Us(Ux)ll:J
me 2+2 3 2+2 3 U
é(Ul) Ul) (Ul) (Ul) a

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)
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and

Differentiation of Eq. (C.7) resultsin the following

w

Q)
o TE:

oo OooC

(C.20)

(C.21)
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2
TF _ . @0
70, 1-9) 0, 5
1 é
1y, 4@ pa, - LG
U g 2gU,
gﬂgz(ux)z U2(Ux)l
3U1é U, (1)2
ﬂ Uz(Ux)l IU3(UV)1
3 () u,)?
TF, u,u, u,

Similarly, differentiation of Eq. (C.8) leadsto

G, _ 1G, _1G -0

U, U, TU,

(C.24)

(C.25)

(C.26)

(C.27)
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Since G, = F3, derivatives of G, with respect to components of U, can be readily

computed from Egs. (C.18)-(C.21). Further proceeding, Ej. (C.10) can be differentiated to

provide

.2 é 2 2 0
TG, _ a0, @-Dsaw,0 a0
T[U U - 2 a%U - U - -
l l? €em o 12 8 (C.28)
2ns (Uy)3 U3(Uy)1 (Ux)z U2(Ux)lu
-—Mmeg 2 > +4 > + 2 - 2 Ly
3 é (Ul) (Ul) (Ul) (Ul) 0
15 - @-§) 22- Zm L.k (C29)
1, U, 3 (U1)2
U
1S (s gy 42 ( y)é (C.30)
U, U, 3 (Ul)
16, -
=g-1 C.31
U, 9 (C.31)

Finaly, differentiation of Eq. (C.11) resultsin
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g R en]
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16, _gY
1, U,

(C.35)

4

The above Jacobian components can then be used in Egs. (8.9) and (8.10) in order to

compute the derivatives of the flux functions.



